Bacteria and algae get rides in clouds

February 16, 2021

Human health and ecosystems could be affected by microbes including cyanobacteria and algae that hitch rides in clouds and enter soil, lakes, oceans and other environments when it rains, according to a Rutgers co-authored study.



"Some of the organisms we detected in clouds and rain are known to have possible impacts on human health and could also affect microbial populations at rainfall locations," said lead author Kevin Dillon, a doctoral student in the lab of co-author Donna E. Fennell, a professor who chairs the Department of Environmental Sciences in the School of Environmental and Biological Sciences at Rutgers University-New Brunswick. "More work is needed to confirm that and to investigate specific impacts."

Scientists, for the first time, were able to grow green algae collected from clouds. Their study, a collaboration between Rutgers and a Université Clermont Auvergne team, is published in the journal Applied and Environmental Microbiology.


They collected cloud water at the summit of puy de Dôme, a mountain in central France, about 4,800 feet above sea level. They also collected rainwater below the mountain at about 2,230 feet above sea level. They detected blue-green (cyanobacteria), green, red and golden algae, as well as diatoms (another form of algae), and they grew green algae in the Chlorellaceae family in a lab.



Some of the microbes that hitched a ride in clouds may have come from the Atlantic Ocean. Others were likely from other parts of France that clouds passed over. Microbes in rain include those in a cloud and the air below it.



The airborne organisms could have important impacts on atmospheric processes and the ecosystems they enter after falling to Earth, the study says.



"Future work would involve identifying specific genes associated with the production of toxins by these organisms and trying to understand what could or would limit the growth of these microorganisms after they're transported into a new ecosystem by rain," Dillon said.

Rutgers University

Related Sea Level Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

From sea to shining sea: new survey reveals state-level opinions on climate change
A new report analyzing state-level opinions on climate change finds the majority of Americans believe in and want action on climate change--but factors like state politics and local climate play important roles.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.

As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Read More: Sea Level News and Sea Level Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.