Individual differences in Achilles tendon shape can affect susceptibility to injury

February 16, 2021

Individual variation in the shape and structure of the Achilles tendon may influence our susceptibility to injury later in life, says a study published today in eLife.

The findings suggest that studying individual Achilles tendon shape (or 'morphology') could help with identifying patients at risk of injury and designing new, potentially personalised approaches for treating and preventing Achilles tendinopathy and similar conditions.

The Achilles tendon is the tissue that links the calf muscles to the heel bone. It is fundamental to our movement and athletic ability. Its unique structure, which combines three smaller sub-tendons, increases the efficiency of our movement by allowing individual control from connected muscles. For this control to occur, the sub-tendons must work together and allow a certain degree of sliding between them. But the ability of the sub-tendons to slide decreases with age, possibly accounting for the increased frequency of injury sometimes seen in later life.

"Each sub-tendon should be seen as an individual working unit within the whole Achilles tendon to fully understand how force is distributed within the tendon," explains lead author Nai-Hao Yin, a PhD student at the UCL Institute of Orthopaedics and Musculoskeletal Science, London UK. "But current medical imaging methods don't allow us to accurately visualise the borders of the sub-tendons in living people. This means the relationship between sub-tendon morphology, mechanical behaviour and injury risk is still unclear."

To help address this gap, Yin and colleagues began by studying five human Achilles tendon specimens, from two males and three females. They performed mechanical tests on the sub-tendons of the specimens to compare their differing mechanical properties. Next, they recorded the morphology of the sub-tendons of an additional three specimens, from two males, aged 54 and 55 years old, and one female, aged 14, which were selected to represent a diverse range of individual differences in tendon morphology.

"Our experiments showed distinct mechanical properties in the sub-tendons in keeping with their mechanical demands," Yin says. "We identified considerable variation in the orientation of the sub-tendons from different individuals."

The team then generated computer models using the data gained from their experiments. They applied a simulation technique to explore how different sliding properties affect sub-tendon movement and distribution of force within the different models. They were especially interested in the soleus muscle-tendon junction, as this location is widely used to measure tendon mechanical properties.

Next, they explored whether the results of their modelling experiments would reflect age-related decline in sub-tendon sliding in people. They recruited two groups of study participants: a group of seven older participants, aged 52-67 years old, and a younger group of nine participants, aged 20-29 years old. They applied electrical stimulation to the participants' calf muscles and recorded the changes that occurred in the junction. The older group of participants showed less sliding compared to the younger group, reflecting the same trend as the modelling result when the team studied the soleus sub-tendon in isolation.

"Our work shows that the mechanical behaviour of the Achilles tendon is highly complex and affected by a combination of factors, including sub-tendon mechanical properties and morphology, and age-related changes in their capacity for sliding," concludes senior author Helen Birch, Professor of Skeletal Tissue Dynamics at the UCL Institute of Orthopaedics and Musculoskeletal Science. "It also suggests that certain tendon morphologies may be more susceptible to injury in later life. We hope our findings will pave the way for further research on how these factors can affect sub-tendons differently among individuals, and ultimately lead to new injury treatment and prevention strategies."
Media contact

Emily Packer, Media Relations Manager
+44 (0)1223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Computational and Systems Biology, and Medicine, while exploring creative new ways to improve how research is assessed and published. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at

To read the latest Computational and Systems Biology research published in eLife, visit

And for the latest in Medicine, see

About UCL - London's Global University

UCL is a diverse community with the freedom to challenge and think differently.

Our community of more than 41,500 students from 150 countries and over 12,500 staff pursues academic excellence, breaks boundaries and makes a positive impact on real world problems.

We are consistently ranked among the top 10 universities in the world and are one of only a handful of institutions rated as having the strongest academic reputation and the broadest research impact.

We have a progressive and integrated approach to our teaching and research - championing innovation, creativity and cross-disciplinary working. We teach our students how to think, not what to think, and see them as partners, collaborators and contributors.

For almost 200 years, we are proud to have opened higher education to students from a wide range of backgrounds and to change the way we create and share knowledge.

We were the first in England to welcome women to university education and that courageous attitude and disruptive spirit is still alive today.

We are UCL.| Follow @uclnews on Twitter | Watch our YouTube channel | Listen to

UCL podcasts on SoundCloud | Find out what's on at UCL Minds | #MadeAtUCL

Find out how UCL is helping lead the global fight against COVID-19


Related Achilles Tendon Articles from Brightsurf:

Healing an Achilles' heel of quantum entanglement
Louisiana State University Associate Professor of Physics Mark M. Wilde and his collaborator have solved a 20-year-old problem in quantum information theory on how to calculate entanglement cost--a way to measure entanglement--in a manner that's efficiently computable, useful, and broadly applicable in several quantum research areas.

Researchers may have uncovered the Achilles heel of viruses
A new research study headed by the Department of Biomedicine at Aarhus University, Denmark, identifies how viruses avoid the body's immune system and cause infections and diseases.

Researchers recommend early walking in a brace for Achilles tendon rupture
A new study from the University of Oxford and the University of Warwick reveals a breakthrough for sportsmen and women in the treatment of Achilles tendon rupture.

Researchers find minimally invasive procedure to treat chronic Achilles tendon disorder improves patient outcomes and reduces recovery time
A minimally invasive procedure to treat a common foot and ankle disorder can reduce pain, recovery time, and postsurgery complications while improving functional outcomes.

Herpes's Achilles heel
Scientists have used the gene-editing tool CRISPR-Cas9 to disrupt both latent reservoirs of the herpes simplex virus and actively replicating virus in human fibroblast cells.

Researchers identify 'Achilles' heel' of drug-resistant superbug
Researchers at The University of Texas Health Science Center at Houston (UTHealth) have identified a protein that allows vancomycin-resistant enterococci, a deadly superbug, to defy antibiotic treatment and immune system attacks.

Tendon stem cells could revolutionize injury recovery
The buildup of scar tissue makes recovery from torn rotator cuffs, jumper's knee, and other tendon injuries a painful, challenging process, often leading to secondary tendon ruptures.

Achilles heel of tumor cells
In almost all cases of colon cancer, a specific gene is mutated -- this offers opportunities to develop broadly effective therapeutic approaches.

Protective mediators can help heal injured tendon cells by attacking inflammation
Tendon tears, both to the rotator cuff and Achilles heel, are common injuries, especially in aged individuals.

HSS researchers identify factor essential for tendon growth
Insulin-like growth factor 1 (IGF1) is essential for allowing tendons to adapt to physical activity and grow properly, according to basic science research by investigators at Hospital for Special Surgery (HSS).

Read More: Achilles Tendon News and Achilles Tendon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to