Telling Friend From Foes? Researchers Find Different Brain Regions Activated By Faces

February 16, 1998

PHILADELPHIA --The recognition of faces is so fast and effortless it's easy to overlook the complexity of the brain systems responsible, says a Duke University Medical Center researcher who has helped identify two critical brain regions involved in our ability to process faces.

The first region lies on the underside of the brain and appears specialized for rapidly distinguishing faces from other objects. The second region is located on the side of the brain, and it becomes involved when one views a face in which the eyes or mouth are moving.

"There is something special, and fascinating, about face perception," said Gregory McCarthy who prepared a report on his work for the annual meeting of the American Association for the Advancement of Science.

"It ties together sensation, recognition, emotion, and memory in different areas of the brain within 200 milliseconds after viewing a face," said McCarthy, director of the Brain Imaging and Analysis Center at Duke.

The results of his newest study, undertaken at Yale University and the West Haven Veterans Administration Medical Center before he came to Duke, will be published in the March 15 issue of the Journal of Neuroscience. Co-authors of the findings are Truett Allison and Aina Puce at Yale.

They found that the area that processes eye and mouth movements is close to, but distinct from, other brain regions that respond to most other kinds of movements.

"The brain may need a dedicated region to process facial movements," McCarthy speculated in an interview, "because eye and mouth movements convey a lot of information, including important social signals." He added that knowledge about what people say is aided by unconsciously watching their lips move. That might be why, for example, people are disturbed by a video in which the visual and audio tracks are not synchronized.

McCarthy's group earlier mapped a region in the underside of the brain that discerns faces from among other everyday objects such as telephones and bicycles. Other groups have identified other brain regions such as the amygdala that identifies the emotional state of the face being seen. It appears then that different brain systems work together to identify a face and to extract important information related to social and verbal communication, McCarthy said.

Among the many questions about face perception yet to be answered is how the brain developed this sophisticated system to recognize and process faces. McCarthy asked, "Is this something that is learned or is it present in the brain from early on? I favor the idea that this is a primitive process that is tuned by experience -- there is a definite survival advantage to recognizing friend from foe."

McCarthy and his colleagues gathered information about these brain areas by functional magnetic resonance imaging (MRI), and by making electrical recordings directly from the brain surface in patients in whom electrodes were implanted by surgeons to identify brain areas involved in epileptic seizures. Functional MRI measures changes in blood oxygenation in small areas of the brain that are activated by a stimulus, such as the picture of a face. The active brain tissue requires more blood flow to deliver oxygen, just as a leg or arm muscle would require during exercise.

The machine does not use damaging X-rays, so it can be used repeatedly to study the architecture of a patient's brain. And because the location of some important brain areas related to language may be different in different people, this information can be helpful to surgeons in reducing neurological deficits following neurosurgery.

Duke University Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to