Targeting cell fusion as possible way to repair organs, deliver cancer vaccines

February 17, 2004

ROCHESTER, Minn. -- Mayo Clinic cancer researchers have developed a way to biologically fuse living cells through the use of a genetically engineered cell membrane. This process, which Mayo researchers call "biofusion," could speed development of new tumor treatments and cancer vaccines.

The Mayo Clinic cancer researchers' study on biofusion appears in the current issue of Nature Biotechnology (http://www.nature.com/nbt/). The researchers report their new process kills cancer tumor cells, based on their successful treatment of mice into which human cancers were implanted.

Significance of the Mayo Clinic Cancer Research

"Our biofusion research represents a promising new technological platform for enlisting natural properties of fused cells to kill cancers, stimulate immune responses or repair damaged tissues," says Stephen Russell, M.D., Ph.D. Dr. Russell directs Mayo Clinic's Molecular Medicine Program and leads the Mayo Clinic Cancer Center's Gene and Virus Therapy Program.

The key to biological cell fusion is that two cells come into contact and the fusion proteins on the surface of one cell recognize a receptor on the other cell. This act of recognition triggers fusion of their respective outer lipid membranes. "It's like two bubbles merging into one bigger bubble," explains Dr. Russell.

With cancer, the fusion rules change, says Dr. Russell. When cancer cells fuse with each other the "big bubble" formed may grow dramatically -- containing up to 1,000 cancer cells -- and it is nonviable. The cancer cells therefore die.

This fact that fused cancer cells kill each other has been known for some years. The missing element has been a way to direct fusion partners to exploit this tendency and use it as a basis for anticancer treatment.

The ability to target fusion partners is important. If the wrong cells fuse, then healthy cells -- instead of cancer -- can be killed. "Our biofusion research brings a new level of control to the system so the right fusion matches are made to serve therapeutic ends," says Dr. Russell. "It offers a biotechnology platform that provides a way to choose and direct the agents of fusion by getting tumor cells to fuse with dendritic cells -- one cell type in the immune system. The result is biofusion that prompts the immune system to attack the tumor.

"This is important because the exploitation of cell fusion, whether for killing cancer cells, repairing damaged tissues or stimulating the immune system, depends on making sure that it is accurately targeted," he says.

Potential Applications

The ability to fuse tumor cells to treat cancers is one application the Mayo Clinic cancer research team envisions for their biofusion platform.

Another possible application involves cancer vaccines that prevent cancer from progressing or developing. Current vaccine approaches involve taking dendritic cells from cancer patients, feeding the dendritic cells tumor antigens, and then reintroducing the dendritic cells into the patient's body and relying on the body's natural process of "instruction" to help the body create cells that attack cancer. In this natural system, dendritic cells present antigens to other immune cells in a way that effectively "teaches" them what they are to attack.

Dr. Russell believes the biofusion technology would be a better way of "feeding" the dendritic cells the information they need to "learn" what they are to attack.

"Biofusion would involve putting genes in the dendritic cells inside the body that will cause them to fuse directly into tumors at multiple sites in the patient," he says. He notes that Mayo Clinic cancer research colleague Richard Vile, Ph.D., last year successfully fused tumor and dendritic cells to create a hybrid of the two -- but it was not targeted. "So this is not blue-sky stuff. We know we can make the hybrid," says Dr. Russell. "Now we just have to get the targeting ability."

A third possible application, still in the concept stages for this targeted biofusion technology, involves stem cells. Because of their powerful generative and regenerative abilities, stem cells are used to repair damage in the bone marrow and to different organs such as the liver, brain and heart.

Recent research shows that some of the stem cells' repair properties come from their ability to fuse with cells that are naturally resident in the organs they are repairing. "For example, they repair the liver by fusing the cellular structures in the liver," Dr. Russell explains. "We may be able to exploit this new biofusion technology by genetically engineering stem cells so they fuse quickly and efficiently to a target site, and thereby direct the stem-cell repair process."
-end-
To obtain the latest news releases from Mayo Clinic,go to www.mayoclinic.org/news. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Mary Lawson
507-284-5005 (days)
507-284-2511 (evenings)
e-mail: newsbureau@mayo.edu

Mayo Clinic

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.