Explaining autism

February 17, 2016

Autism Spectrum Disorders (ASDs) are a group of highly inheritable behavioural disorders that pose major personal and public health concerns. Patients with ASDs have mild to severe communication difficulties, repetitive behaviour and social challenges. Such disorders significantly challenge an individual's ability to conduct daily activities and function normally in society. Currently there are very few medication options that effectively treat ASDs.

Recognising a need to better understand the biology that produces ASD symptoms, scientists at Duke-NUS Medical School (Duke-NUS) and the National Neuroscience Institute (NNI), Singapore, have teamed up and identified a novel mechanism that potentially links abnormal brain development to the cause of ASDs. This new knowledge will help to improve the diagnosis and development of therapeutic interventions for ASDs.

In the study, published today in the journal eLife, co-senior authors Assistant Professor Shawn Je from Duke-NUS and Assistant Professor Zeng Li from NNI have shown how one brain-specific microRNA (miR-128) plays a key role in causing abnormal brain development. MicroRNAs are small molecules that regulate gene expression in the human body to ensure proper cellular functions. Although it was known that miR-128 is misregulated in some patients with autism, what that meant and how it functioned was not known.

The Duke-NUS and NNI team showed that miR-128 targets a protein called PCM1 that is critical to the cell division of neural precursor cells (NPCs). NPCs during early brain development have two fates - they either stay as NPCs and undergo self-renewal or become neurons through differentiation. The dysfunctional regulation of PCM1 by misregulated miR-128 impairs brain development, which may underlie brain size changes in people with ASDs.

"For the first time, we have managed to show that miR-128 is a mechanism that regulates early neuronal behaviour during brain development," said Asst Prof Je, from the Neuroscience and Behavioural Disorders (NBD) Programme at Duke-NUS. "Targeting this mechanism may be the answer to diagnose and treat ASDs that are caused by abnormal brain development."

Asst Prof Li, from the Neural Stem Cells Laboratory at NNI, added, "This important study suggests a link between a key neurological disease gene and regulation of microRNAs in the brain. However, we are just starting to understand how misregulated miR-128 expression can cause our brain activities to go wrong, and much more work needs to be done."

In a separate study which is not yet published, this team with Professor Steve Rozen, from the NBD Programme at Duke-NUS, identified many new mutations in the PCM1 gene from ASD patients from next-generation sequencing. Future work to correlate these mutations with functional consequences in brain development should not only increase the understanding of how autism is caused, but also enable a more accurate diagnosis of autism and other ASDs.
-end-
Study authors include first authors, Dr Zhang Wei, a Post-Doctoral Fellow from the NNI and MD/PhD student Paul Kim from Duke-NUS. Research is supported by the A*STAR Translational Clinical Research Partnership Award.

Duke-NUS Medical School

Related Autism Articles from Brightsurf:

Autism-cholesterol link
Study identifies genetic link between cholesterol alterations and autism.

National Autism Indicators Report: the connection between autism and financial hardship
A.J. Drexel Autism Institute released the 2020 National Autism Indicators Report highlighting the financial challenges facing households of children with autism spectrum disorder (ASD), including higher levels of poverty, material hardship and medical expenses.

Autism risk estimated at 3 to 5% for children whose parents have a sibling with autism
Roughly 3 to 5% of children with an aunt or uncle with autism spectrum disorder (ASD) can also be expected to have ASD, compared to about 1.5% of children in the general population, according to a study funded by the National Institutes of Health.

Adulthood with autism
The independence that comes with growing up can be scary for any teenager, but for young adults with autism spectrum disorder and their caregivers, the transition from adolescence to adulthood can seem particularly daunting.

Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.

Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.

Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.

Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.

State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.

Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.

Read More: Autism News and Autism Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.