Dynamical systems theory enhances knowledge of Jupiter's atmosphere

February 17, 2016

Jupiter, which has a mass more than twice that of all the planets combined, continues to fascinate researchers. The planet is characterized most often by its powerful jet streams and Great Red Spot (GRS), the biggest and longest-lasting known atmospheric vortex. Although still images provide some insight into the features of Jupiter's atmosphere, the atmosphere itself is unsteady and turbulent, and its features are time-dependent.

In a paper published this month in SIAM Review, authors Alireza Hadjighasem and George Haller use video footage to analyze Jupiter's transport barriers and examine prior conclusions about Jupiter's atmosphere.

According to dynamical systems theory, transport barriers exist in complex flows as objects that cannot be crossed by other fluid trajectories. Those in unsteady flows, such as Jupiter's atmosphere, are material surfaces with coherent features in their deformations. These surfaces are called Lagrangian coherent structures (LCSs). Hadjighasem and Haller employ geodesic LCS theory, which generates transport barriers as smooth curves, to search for unsteady transport barriers in the planet's atmosphere.

Using a video from NASA's 2000 Cassini mission, the authors apply an existing algorithm, called Advection Corrected Correlation Image Velocimetry (ACCIV), to obtain a time-resolved, two-dimensional representation of Jupiter's wind-velocity field. From this representation, they construct an unstable velocity field model. Subsequent analysis recognizes - for the first time - unsteady material transport barriers surrounding both the GRS and the jet streams around the GRS caused by Jupiter's fast rotation. These discoveries reinforce prior conclusions about Jupiter's atmosphere.

NASA's Juno mission will reach Jupiter in 2016, and the authors hope that this mission will provide information that will extend their current examinations to three dimensions. Their findings have potential applications for the remote observance of patterns in oceanography, meteorology, crowd surveillance, and environmental monitoring.
-end-
Read the full version of this article and view the associated videos at http://epubs.siam.org/doi/abs/10.1137/140983665, and view other SIAM Nuggets at http://connect.siam.org/category/siam-nuggets/.

Source Article:

Geodesic Transport Barriers in Jupiter's Atmosphere: A Video-Based Analysis. SIAM Review, 58(1). (Online publish date: February 4, 2016).

About the authors:

Alireza Hadjighasem is a Ph.D. student in the Department of Mechanical and Process Engineering at the Institute for Mechanical Systems, ETH Zürich. George Haller is a professor and chair in Nonlinear Dynamics in the Department of Mechanical and Process Engineering at the Institute for Mechanical Systems, ETH Zürich.

Society for Industrial and Applied Mathematics

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.