Nav: Home

More evidence that Zika mRNA vaccines can stop viral replication in mice

February 17, 2017

Vaccine developers have successfully protected mice against Zika by injecting synthetic messenger RNA that encodes for virus proteins into the animals. The cells of the mice then build parts of the virus, training the immune system to recognize a future infection. The research, published February 17 in Cell, follows a February 2 Letter in Nature (doi:10.1038/nature21428) that showed similar positive results for a messenger RNA vaccine for Zika in mice and monkeys.

"We measured virus in the blood, virus in the brain, virus in the spleen, virus in the uterus for the female mice, and in one group of our vaccines we saw no viral replication at all in 95% of the mice," says study senior co-author Michael Diamond, infectious disease researcher at the Washington University School of Medicine in St. Louis.

Instead of training the immune system with weakened viruses or viral fragments, RNA vaccines trick cells into building pieces of virus, much the way viruses coerce cells into building more viruses. "Zika viruses inject their RNA into the cytoplasm and then they hijack the cell's translation machinery to produce their antigen," says study co-senior author Giuseppe Ciaramella, the Chief Scientific Officer at Valera LLC, a Moderna Venture focusing on the development of therapeutic approaches for infectious diseases. "With our vaccines, we direct cells to do exactly the same."

While viruses inject RNA instructions to build an entire virus, the vaccine contains RNA with instructions for just two Zika proteins. When the vaccine RNA enters the mouse cells, the ribosomes pick it up, build the protein, and release it. The two proteins can't infect any other cells, but they're enough for the immune system to learn to recognize Zika and build immunity.

Researchers have been hesitant to use weakened viruses of Zika to immunize against the virus, because Zika viruses can enter the brain. Even with weakened Zika, some scientists are concerned that attenuated viruses might still cause some damage in the brain. However, with RNA vaccines, cells quickly uptake the RNA, which never reaches the brain.

Another key advantage of using RNA vaccines is their adaptability. Biologists have had a lot of practice at altering RNA strands, making it easier to customize the vaccine.

The researchers demonstrated the vaccine's flexibility by addressing one possible concern in the Zika vaccine development community. Zika virus looks an awful lot like its close relative, the dengue virus. In fact, they look so much alike that the immune system's antibodies against Zika might latch onto dengue viruses without actually killing the dengue virus. If that occurred, anti-Zika antibodies might worsen dengue infections. However, slightly modifying the RNA in the vaccine allowed the researchers to induce a Zika-killing antibody that minimized its ability to bind to dengue.

The researchers stressed that there haven't been epidemiological studies reporting especially vicious dengue infections in people who have had Zika. "It is a theoretical concern. We do not know yet if it's going to be a major concern or not. Because you need to have Zika first and then get dengue," says Diamond. Lots of people have gotten dengue first and later caught Zika, but since Zika is a relatively new addition to most locales, there haven't been enough Zika-first, dengue-second cases to lay the concern to rest. "We just don't know yet," says Diamond.

Next steps for the Zika RNA vaccines include a human clinical trial (which is currently recruiting) and mouse studies that test whether the vaccine can prevent mother-to-fetus transmission.
-end-
This work was supported by grants from the NIH-NIAID and by a research grant from Moderna. Michael Diamond is a consultant or scientific advisor for several pharmaceutical companies, including Moderna. Giuseppe Ciaramella and two co-authors are employees of Valera LLC, a Moderna venture. Pre-clinical funding for Moderna's development of its Zika mRNA vaccine was provided by the Defense Advanced Research Projects Agency (DARPA). Funding for the clinical trials of Moderna's Zika mRNA vaccine is provided by the Biomedical Advanced Research and Development Authority (BARDA), a division of the Office of the Assistant Secretary for Preparedness and Response (ASPR) within the U.S. Department of Health and Human Services (HHS).

Cell, Richner and Himansu et al.: "Modified mRNA vaccines protect against Zika virus and minimize antibody enhancement of dengue virus infection" http://www.cell.com/cell/fulltext/S0092-8674(17)30195-2

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.