Nav: Home

PPPL-led fusion code selected for all 3 pre-exascale supercomputers

February 17, 2017

U.S. Department of Energy (DOE) high-performance computer sites have selected a dynamic fusion code, led by physicist C.S. Chang of the DOE's Princeton Plasma Physics Laboratory (PPPL), for optimization on three powerful new supercomputers. The PPPL-led code was one of only three codes out of more than 30 science and engineering programs selected to participate in Early Science programs on all three new supercomputers, which will serve as forerunners for even more powerful exascale machines that are to begin operating in the United States in the early 2020s.

The PPPL code, called XGC, simulates behavior of the ions, electrons and neutral atoms in the transport barrier region-- or "pedestal" -- between the ultra-hot core of the plasma that fuels fusion reactions and the cooler and turbulent outer edge of the plasma. The pedestal must be high and wide enough to prevent damage to the divertor plate that exhausts heat in doughnut-shaped tokamaks that house the fusion reactions. "How to create a high edge pedestal without damaging the divertor wall is the key question to be answered," said Chang. "That is a prerequisite for achieving steady state fusion."

Among the team of nationwide experts developing this program are PPPL physicists Seung-Ho Ku, Robert Hager and Stephane Ethier.

Selection of the PPPL code could help ready it for exascale development. "Computer architecture is evolving rapidly and these new pre-exascale computers have features that are quite different from some of the earlier petascale supercomputers," said Amitava Bhattacharjee, head of the Theory Department at PPPL. Petascale machines operate in petaflops, or one million billion (1015) floating point operations per second.

Bhattacharjee heads a PPPL-led Exascale Computing Project that will integrate the XGC code with GENE, a code developed at the University of California, Los Angeles, to create the first simulation of a complete fusion plasma. Exascale supercomputers will perform exaflops, or a billion billion (1018) floating point operations per second.

The three new pre-exascale supercomputers:

Cori, now fully installed at the National Energy Research Scientific Computing Center (NERSC) at the Lawrence Berkeley National Laboratory. Cori, named for biochemist Gerty Cori, the first American woman to win a Nobel Prize in science, has a theoretical peak speed of 30 petaflops per second on scientific applications using Intel Xeon "Haswell" and Xeon Phi "Knights Landing" processor nodes.

Also selected to participate in Cori's NERSC Exascale Science Applications Program (NESAP) is the PPPL-led M3D-CI, an extended magnetohydrodynamics (MHD) code focused on simulation of plasma disruptions led by physicist Stephen Jardin, with support from physicists Joshua Breslau, Nate Ferraro and Jin Chen.

Two more PPPL-led codes, in addition to the 20 that included XGC and M3D-CI that were previously selected, will participate in the Cori NERSC program. These programs are GTC-P and GTS codes that model plasma turbulence in the plasma core and are headed by physicists William Tang and Stephane Ethier. Principal developer of the GTS code is PPPL physicist Weixing Wang. The GTC-P code is PPPL's version of the GTC code led by the University of California, Irvine.

Summit, to be operational at the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory in 2018. Summit features a hybrid architecture consisting of IBM Power 9 processors and multiple NVIDIA Volta graphic processing units and will be capable of performing up to at least 200 petaflops for a wide range of applications. The facility's Center for Accelerated Application Readiness (CAAR) program has selected 13 projects that will participate in the program to optimize their applications codes and demonstrate the effectiveness of their applications on Summit.

Aurora, scheduled to be deployed in 2018 at the Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory, will be comprised of third generation Intel Xeon Phi "Knights Hill" many-core processors. Ten projects have been selected for the ALCF Early Science Program, which is expected to be capable of performing up to 200 petaflops on a wide range of scientific applications.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
-end-


DOE/Princeton Plasma Physics Laboratory

Related Plasma Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Getting the biggest bang out of plasma jets
Capillary discharge plasma jets are created by a large current that passes through a low-density gas in what is called a capillary chamber.
Neptune: Neutralizer-free plasma propulsion
Plasma propulsion concepts are gridded-ion thrusters that accelerate and emit more positively charged particles than negatively charged ones.
UCLA researchers discover a new cause of high plasma triglycerides
People with hypertriglyceridemia often are told to change their diet and lose weight.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
New feedback system could allow greater control over fusion plasma
A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.
PPPL scientist uncovers physics behind plasma-etching process
PPPL physicist Igor Kaganovich and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Anti-tumor effect of novel plasma medicine caused by lactate
Nagoya University researchers developed a new physical plasma-activated salt solution for use as chemotherapy.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.

Related Plasma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...