Nav: Home

Local weather impacts melting of one of Antarctica's fastest-retreating glaciers

February 17, 2017

Local weather plays an important part in the retreat of the ice shelves in West Antarctica, according to new research published in the journal Nature Communications.

The study led by scientists at the University of East Anglia (UEA) of the Pine Island Glacier (PIG) used a unique five-year record to study how the interactions between the ocean and the atmosphere, as well as changing currents, control how heat is transported to, and beneath, the Pine Island Ice Shelf.

Pine Island Glacier is one of the fastest melting glaciers in Antarctica with some studies suggesting that its eventual collapse is almost inevitable.

Previous research suggested more warm water was circulating under the ice shelf and melting it more rapidly, leading to an increasing contribution to sea level rise. However relatively little was known about what drives changes in ocean conditions in this remote part of Antarctica due to its inaccessibility. Some studies suggested that the ocean conditions close to Pine Island Glacier are influenced most strongly by winds at the edge of the continental shelf, some 400 km to the north, which in turn respond to changes in tropical ocean temperatures.

The study looked at the impact of shelf-edge winds and found this to be less direct than previously thought, and that local atmospheric conditions and ocean circulation are the main drivers of ocean temperature changes in the critical 350-700m depth range, over the period of observation.

Dr Ben Webber, oceanographer at UEA's School of Environmental Sciences said: "The ice shelves of the Amundsen Sea - an area of the Southern Ocean - protect much of the West Antarctic Ice Sheet from collapse. These ice shelves are rapidly losing mass and understanding the mechanisms which control ocean conditions and drive melting of these glaciers is hugely important.

"We found a strong annual cycle in the exchange of heat between the ocean and the atmosphere, which drives changes in ocean temperature. While these changes are less evident in deeper waters, through convection and mixing the heat can penetrate deeply enough to have a major impact on melting and influence the temperature of the water entering the cavity under the glacier.

"There was a colder weather period from 2012-13, however, a separate study has shown that this only led to a partial slowdown of the glacier's retreat, and many glaciers in the region have been retreating for decades and aren't slowing down."

Changes in the direction of the ocean currents also cause changes in temperature close to Pine Island Glacier. The colder period was associated with a reversal in the currents that transport heat into and around the bay.

Co-author Dr Povl Abrahamsen, oceanographer at British Antarctic Survey, said: "Most of the ocean data around Antarctica are snapshots of conditions - and many areas are only visited once every one or two years, if that. A continuous five-year time series near Pine Island Glacier, one of the fastest-melting glaciers in Antarctica, lets us see what is happening between these snapshots, giving us insights into the processes driving the melting of Pine Island Glacier."

Dr Webber continued: "It is likely that other ice shelves around Antarctica that are melting due to warm ocean conditions will also be strongly influenced by local atmospheric conditions. This would underline the importance of atmospheric and ocean monitoring close to the Antarctic coasts to give early warning of future changes in ice shelf melting and glacial retreat."
-end-
The research was carried as part of the Natural Environment Research Council (NERC)-funded iSTAR Programme and was in collaboration with US and Korean collaborators using data from ship-based and atmospheric observations including ship-deployed oceanographic moorings.

'Mechanisms driving variability in the ocean forcing of Pine Island Glacier' is published in the journal Nature Communications - DOI: 10.1038/ncomms14507

University of East Anglia

Related Glaciers Articles:

Saying goodbye to glaciers
Glaciers around the world are disappearing before our eyes, and the implications for people are wide-ranging and troubling, Twila Moon, a glacier expert at the University of Colorado Boulder, concludes in a Perspectives piece in the journal Science today.
Glaciers rapidly shrinking and disappearing: 50 years of glacier change in Montana
The warming climate has dramatically reduced the size of 39 glaciers in Montana since 1966, some by as much as 85 percent, according to data released by the U.S.
Polar glaciers may be home to previously undiscovered carbon cycle
Microbes in streams flowing on the surface of glaciers in the Arctic and Antarctic may represent a previously underestimated source of organic material and be part of an as yet undiscovered 'dynamic local carbon cycle,' according to a new paper published by researchers supported by the National Science Foundation.
Study shows planet's atmospheric oxygen rose through glaciers
A 'Snowball Earth' event actually took place 100 million years earlier than previously projected.
Researchers find seafloor valleys below West Antarctic glaciers
Glaciologists have uncovered large valleys in the ocean floor beneath some of the massive glaciers flowing into the Amundsen Sea in West Antarctica.
Mountain glaciers are showing some of the strongest responses to climate change
Tying an individual glacier's retreat to climate change has been controversial.
Most meltwater in Greenland fjords likely comes from icebergs, not glaciers
Icebergs contribute more meltwater to Greenland's fjords than previously thought, losing up to half of their volume as they move through the narrow inlets, according to new research.
Receding glaciers in Bolivia leave communities at risk
A new study published in The Cryosphere, an European Geosciences Union journal, has found that Bolivian glaciers shrunk by 43 percent between 1986 and 2014, and will continue to diminish if temperatures in the region continue to increase.
Technique could assess historic changes to Antarctic sea ice and glaciers
Historic changes to Antarctic sea ice could be unravelled using a new technique pioneered by scientists at Plymouth University.
Cosmopolitan snow algae accelerate the melting of Arctic glaciers
The role of red pigmented snow algae in melting Arctic glaciers has been strongly underestimated, suggests a study to be published in Nature Communications on June 22.

Related Glaciers Reading:

The Secret Lives of Glaciers
by M Jackson (Author)

Glaciers and Glaciation, 2nd edition (Hodder Arnold Publication)
by Douglas Benn (Author), David J A Evans (Author)

Glaciers (A Tin House New Voice)
by Alexis M. Smith (Author)

Moon Glacier National Park (Travel Guide)
by Becky Lomax (Author)

Glaciers: The Politics of Ice
by Jorge Daniel Taillant (Author)

Icebergs, Ice Caps, and Glaciers (Rookie Read-About Science)
by Allan Fowler (Author)

Glacier and Waterton Lakes National Parks (National Geographic Trails Illustrated Map)
by National Geographic Maps - Trails Illustrated (Author)

Moon Glacier National Park (Travel Guide)
by Becky Lomax (Author)

Icebergs & Glaciers: Revised Edition
by Seymour Simon (Author)

Day Hikes of Glacier National Park Map-Guide
by Jake Bramante (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".