Nav: Home

Breakthrough with a chain of gold atoms

February 17, 2017

Heat transport is of similar fundamental importance and its control is for instance necessary to efficiently cool the ever smaller chips. An international team including theoretical physicists from Konstanz, Junior Professor Fabian Pauly and Professor Peter Nielaba and their staff, has achieved a real breakthrough in better understanding heat transport at the nanoscale. The team used a system that experimentalists in nanoscience can nowadays realize quite routinely and keeps serving as the "fruit fly" for breakthrough discoveries: a chain of gold atoms. They used it to demonstrate the quantization of the electronic part of the thermal conductance. The study also shows that the Wiedemann-Franz law, a relation from classical physics, remains valid down to the atomic level. The results were published in the scientific journal "Science" on 16 February 2017.

To begin with, the test object is a microscopic gold wire. This wire is pulled until its cross section is only one atom wide and a chain of gold atoms forms, before it finally breaks. The physicists send electric current through this atomic chain, that is through the thinnest wire conceivable. With the help of different theoretical models the researchers can predict the conductance value of the electric transport, and also confirm it by experiment. This electric conductance value indicates how much charge current flows when an electrical voltage is applied. The thermal conductance, that indicates the amount of heat flow for a difference in temperature, could not yet be measured for such atomic wires.

Now the question was whether the Wiedemann-Franz law, that states that the electric conductance and the thermal conductance are proportional to each other, remains valid also at the atomic scale. Generally, electrons as well as atomic oscillations (also called vibrations or phonons) contribute to heat transport. Quantum mechanics has to be used, at the atomic level, to describe both the electron and the phonon transport. The Wiedemann-Franz law, however, only describes the relation between macroscopic electronic properties. Therefore, initially the researchers had to find out how high the contribution of the phonons is to the thermal conductance.

The doctoral researchers Jan Klöckner and Manuel Matt did complementary theoretical calculations, which showed that usually the contribution of phonons to the heat transport in atomically thin gold wires is less than ten percent, and thus is not decisive. At the same time, the simulations confirm the applicability of the Wiedemann-Franz law. Manuel Matt used an efficient, albeit less accurate method that provided statistical results for many gold wire stretching events to calculate the electronic part of the thermal conductance value, while Jan Klöckner applied density functional theory to estimate the electronic and phononic contributions in individual contact geometries. The quantization of the thermal conductance in gold chains, as proven by experiment, ultimately results from the combination of three factors: the quantization of the electrical conductance value in units of the so-called conductance quantum (twice the inverse Klitzing constant 2e2/h), the negligible role of phonons in heat transport and the validity of the Wiedemann-Franz law.

For quite some time it has been possible to theoretically calculate, with the help of computer models as developed in the teams of Fabian Pauly and Peter Nielaba, how charges and heat flow through nanostructures. A highly precise experimental setup, as created by the experimental colleagues Professor Edgar Meyhofer and Professor Pramod Reddy from the University of Michigan (USA), was required to be able to compare the theoretical predictions with measurements. In previous experiments the signals from the heat flow through single atom contacts were too small. The Michigan group succeeded in improving the experiment: Now the actual signal can be filtered out and measured.

The results of the research team make it possible to study heat transport not only in atomic gold contacts but many other nanosystems. They offer opportunities to experimentally and theoretically explore numerous fundamental quantum heat transport phenomenona that might help to use energy more efficiently, for example by exploiting thermoelectricity.
-end-
Original Publication:

Longji Cui, Wonho Jeong, Sunghoon Hur, Manuel Matt, Jan C. Klöckner, Fabian Pauly, Peter Nielaba, Juan Carlos Cuevas, Edgar Meyhofer, Pramod Reddy: Quantized Thermal Transport in Single Atom Junctions, Science 16 February 2017. Vol 291, Issue 5507. http://science.sciencemag.org/content/early/2017/02/15/science.aam6622

Facts:
  • The study was conducted at the University of Konstanz in the Collaborative Research Center (SFB) 767 "Controlled Nanosystems".
  • Co-author Professor Juan Carlos Cuevas, working at Universidad Autónoma de Madrid (Spain), is a DFG Mercator Fellow of the SFB 767.
  • Jan Klöckner's doctoral thesis is supported by the Junior Professorship Programme of the Ministry of Science, Research and the Arts Baden-Württemberg (MWK).
  • Fabian Pauly's junior professorship is sponsored by the Carl-Zeiss Foundation.
  • Computing time for the numerical simulations was provided, amongst others, by the initiative for high performance computing of the state of Baden-Württemberg (bwHPC).

Note to editors:

You can download photos here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/System-Uni-KN.jpg
Caption:
Arists' view of the quantized thermal conductance of an atomically thin gold contact.
Created by Enrique Sahagun

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Pauly-Uni-KN.jpg
Caption:
(from left to right): Prof. Dr. Peter Nielaba, Manuel Matt, Jan Klöckner und Jun.-Prof. Dr. Fabian Pauly.
Photo: University of Konstanz

Contact

University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

- uni.kn

University of Konstanz

Related Heat Flow Articles:

Visualizing heat flow in bamboo could help design more energy-efficient and fire-safe buildings
Modified natural materials will be an essential component of a sustainable future, but first a detailed understanding of their properties is needed.
Energy flow in the nano range
It is crucial for photovoltaics and other technical applications, how efficiently energy spreads in a small volume.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Ten years of icy data show the flow of heat from the Arctic seafloor
In addition to 10 years of data on the flow of heat in the Arctic ocean seafloor, the USGS and Geological Survey of Canada have published an analysis of that data using modern seismic data.
Heat flow through single molecules detected
Researchers develop ways to measure and explain heat transport through a single molecule.
Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.
Experiment reverses the direction of heat flow
A study led by Brazilian scientists used quantum correlations to make heat flow from a colder to a hotter medium without adding external energy, affording a deeper understanding of the second law of thermodynamics.
Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.
How flow shapes bacterial biofilms
EPFL biophysicists have taken a systematic look into how bacterial biofilms are affected by fluid flow.
Physicists improve understanding of heat and particle flow in the edge of a fusion device
PPPL physicists have discovered valuable information about how plasma flows at the edge inside doughnut-shaped fusion devices.
More Heat Flow News and Heat Flow Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.