Nav: Home

Looking for the next leap in rechargeable batteries

February 17, 2017

USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.

In a paper published in the January issue of the Journal of the Electrochemical Society, Sri Narayan and Derek Moy of the USC Loker Hydrocarbon Research Institute outline how they developed an alteration to the lithium-sulfur battery that could make it more than competitive with the industry standard lithium-ion battery.

The lithium-sulfur battery, long thought to be better at energy storage capacity than its more popular lithium-ion counterpart, was hampered by its short cycle life. Currently the lithium-sulfur battery can be recharged 50 to 100 times -- impractical as an alternative energy source compared to 1,000 times for many rechargeable batteries on the market today.

A small piece of material saves so much life

The solution devised by Narayan and lead author and research assistant Moy is something they call the "Mixed Conduction Membrane," or MCM, a small piece of non-porous, fabricated material sandwiched between two layers of porous separators, soaked in electrolytes and placed between the two electrodes.

The membrane works as a barrier in reducing the shuttling of dissolved polysulfides between anode and cathode, a process that increases the kind of cycle strain that has made the use of lithium-sulfur batteries for energy storage a challenge. The MCM still allows for the necessary movement of lithium ions, mimicking the process as it occurs in lithium-ion batteries. This novel membrane solution preserves the high-discharge rate capability and energy density without losing capacity over time.

At various rates of discharge, the researchers found that the lithium-sulfur batteries that made use of MCM led to 100 percent capacity retention and had up to four times longer life compared to batteries without the membrane.

"This advance removes one of the major technical barriers to the commercialization of the lithium-sulfur battery, allowing us to realize better options for energy efficiency," said Narayan, senior author and professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences. "We can now focus our efforts on improving other parts of lithium-sulfur battery discharge and recharge that hurt the overall life cycle of the battery."

Cheap and abundant building blocks

Lithium-sulfur batteries have a host of advantages over lithium-ion batteries: They are made with abundant and cheap sulfur, and are two to three times denser, which makes them both smaller and better at storing charge.

A lithium-sulfur battery would be ideal for saving space in mobile phones and computers, as well as allowing for weight reduction in future electric vehicles, including cars and even planes, further reducing reliance on fossil fuels, researchers said.

The actual MCM layer that Narayan and Moy devised is a thin film of lithiated cobalt oxide, though future alternative materials could produce even better results. According to Narayan and Moy, any substitute material used as an MCM must satisfy some fundamental criteria: The material must be non-porous, it should have mixed conduction properties and it must be electrochemically inert.
-end-
The study was funded by the University of Southern California and the Loker Hydrocarbon Research Institute.

University of Southern California

Related Energy Storage Articles:

Magnetoelectric memory cell increases energy efficiency for data storage
A team of researchers has now developed a magnetoelectric random access memory (MELRAM) cell that has the potential to increase power efficiency, and thereby decrease heat waste, by orders of magnitude for read operations at room temperature.
Thin layers of water hold promise for the energy storage of the future
Researchers have found that a material which incorporates atomically thin layers of water is able to store and deliver energy much more quickly than the same material that doesn't include the water layers.
Current Graphene Science tours its journey of high-performance energy storage devices
Graphene has made its fathomable pathway over wide range of user-friendly energy storage devices.
Bio-inspired energy storage: A new light for solar power
Inspired by the western Swordfern, a groundbreaking prototype could be the answer to the storage challenge still holding solar back as a total energy solution.
Stabilizing energy storage
University of Utah and University of Michigan chemists, participating in a US Department of Energy consortium, predict a better future for these types of batteries, called redox flow batteries.
New hydronium-ion battery presents opportunity for more sustainable energy storage
A new type of battery shows promise for sustainable, high-power energy storage.It's the world's first battery to use only hydronium ions as the charge carrier.
Nanoscale view of energy storage
Through long shifts at the helm of a highly sophisticated microscope, researchers at Stanford recorded reactions at near-atomic-scale resolution.
Sandia Labs, Singapore join forces to develop energy storage
Sandia National Laboratories has signed a Cooperative Research and Development Agreement (CRADA) with the government of Singapore's Energy Market Authority (EMA) that will tap into the labs' expertise in energy storage.
New biofuel cell with energy storage
Researchers have developed a hybrid of a fuel cell and capacitor on a biocatalytic basis.
Energy storage system of tomorrow tested for the first time in Lake Constance
How can the enormous amounts of electricity generated through offshore wind power be temporarily stored on site?

Related Energy Storage Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".