Nav: Home

From mice, clues to microbiome's influence on metabolic disease

February 17, 2017

MADISON, Wis. -- The community of microorganisms that resides in the gut, known as the microbiome, has been shown to work in tandem with the genes of a host organism to regulate insulin secretion, a key variable in the onset of the metabolic disease diabetes.

That is the primary finding of a study published this week (Feb. 14, 2017) in the journal Cell Reports by a team led by University of Wisconsin-Madison researchers Alan Attie and Federico Rey. The new report describes experiments in mice showing how genetic variation in a host animal shapes the microbiome -- a rich ecosystem of mostly beneficial microorgannisms that resides in the gut -- and sets the table for the onset of metabolic disease.

"We're trying to use genetics to find out how bugs affect diabetes and metabolism," explains Attie, a UW-Madison professor of biochemistry and a corresponding author of the new study.

Peeling back the complex interplay of genes, diet and the trillions of microorganisms that live in the guts of humans and other animals, Rey, Attie and their colleagues are beginning to work out the subtleties of how host genes shape the composition of the microbiome and contribute to an animal's phenotype and, ultimately, diet-induced metabolic disease.

Metabolic diseases such as diabetes have long been known to be influenced by both genes and diet. Understanding the role of the microbes that live in the gut and help process nutrients not only promises a fuller understanding of the link between genes, diet and disease, but may also be a pathway to pinpointing the genes responsible for conditions like diabetes.

"We're asking whether or not there is a chain of causality between gut microbiota and (disease) phenotype," says Attie. "Genetics is the anchor. If something is associated with a gene, it is truly a causal relationship, not just a correlation."

To leverage that approach, the new Wisconsin study employed a cohort of eight strains of mice whose genetics collectively mirror the genetic diversity of the human population.

"These mice show tremendous phenotypic diversity," says Attie. "Some are lean. Some are susceptible to obesity. Some are resistant to obesity. Some of these phenotypes can be partially transmitted by gut microbiota."

Clues to the influence of genes on the composition of the microbiome emerged from experiments where mice were raised in a germ-free environment and challenged by a diet high in fat and sugar. Through fecal transplants, microbiomes could be effectively traded bewteen strains, helping researchers home in on the interplay between genes and the microbiome.

"Our study suggests that a lot of the genetic variation we see among these eight strains of mice is reflected in their microbiomes," notes Rey, a UW-Madison professor of bacteriology and a corresponding author of the study. "And we have evidence that the composition of the gut microbiota is controlled by the genomes of the mice. We're trying to find the genes that control the composition of the gut microbiota and (dictate) host phenotype."

In response to diet, the Wisconsin group observed a "remarkable variation" in mice whose genetics make them prone to diabetes. They also noticed an accompanying change in the makeup of the animals' gut microbiomes. Some of the bacteria, according to Rey and Attie, could be linked to metabolic traits such as body weight, and glucose and insulin levels.

The microbiome plays a crucial role in processing nutrients. Food not metabolized directly by a host like a mouse or a human is subsequently processed in the gut by the bacteria of the microbiome. As the microbes metabolize food, they produce an astonishing number of small molecules, chemicals and hormones that circulate in a host and can influence health in an animal.

Among those metabolites, perhaps as many as 20,000 in all, are what are called short-chain fatty acids, which serve as signaling molecules in the intestine and associated organs like the liver and pancreas. In particular, they are key regulators of energy and glucose.

Gut microbes also influence the physiology of the host by modifying bile acids produced by the liver, which are also processed by the microbiome to produce secondary metabolites that can exert an influence on disease and health.

Mice in the study that were put on a rich diet and received microbiome transplants helped the Wisconsin team expose functional differences attributable to two different transplanted microbiomes, including a link between the gut microbiome and insulin secretion.
-end-
CONTACT:

Federico Rey
608-890-2046
ferey@wisc.edu

Alan Attie
608-262-1372
adattie@wisc.edu

DOWNLOAD PHOTO: https://uwmadison.box.com/v/mice-microbiome

University of Wisconsin-Madison

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...