Nav: Home

From mice, clues to microbiome's influence on metabolic disease

February 17, 2017

MADISON, Wis. -- The community of microorganisms that resides in the gut, known as the microbiome, has been shown to work in tandem with the genes of a host organism to regulate insulin secretion, a key variable in the onset of the metabolic disease diabetes.

That is the primary finding of a study published this week (Feb. 14, 2017) in the journal Cell Reports by a team led by University of Wisconsin-Madison researchers Alan Attie and Federico Rey. The new report describes experiments in mice showing how genetic variation in a host animal shapes the microbiome -- a rich ecosystem of mostly beneficial microorgannisms that resides in the gut -- and sets the table for the onset of metabolic disease.

"We're trying to use genetics to find out how bugs affect diabetes and metabolism," explains Attie, a UW-Madison professor of biochemistry and a corresponding author of the new study.

Peeling back the complex interplay of genes, diet and the trillions of microorganisms that live in the guts of humans and other animals, Rey, Attie and their colleagues are beginning to work out the subtleties of how host genes shape the composition of the microbiome and contribute to an animal's phenotype and, ultimately, diet-induced metabolic disease.

Metabolic diseases such as diabetes have long been known to be influenced by both genes and diet. Understanding the role of the microbes that live in the gut and help process nutrients not only promises a fuller understanding of the link between genes, diet and disease, but may also be a pathway to pinpointing the genes responsible for conditions like diabetes.

"We're asking whether or not there is a chain of causality between gut microbiota and (disease) phenotype," says Attie. "Genetics is the anchor. If something is associated with a gene, it is truly a causal relationship, not just a correlation."

To leverage that approach, the new Wisconsin study employed a cohort of eight strains of mice whose genetics collectively mirror the genetic diversity of the human population.

"These mice show tremendous phenotypic diversity," says Attie. "Some are lean. Some are susceptible to obesity. Some are resistant to obesity. Some of these phenotypes can be partially transmitted by gut microbiota."

Clues to the influence of genes on the composition of the microbiome emerged from experiments where mice were raised in a germ-free environment and challenged by a diet high in fat and sugar. Through fecal transplants, microbiomes could be effectively traded bewteen strains, helping researchers home in on the interplay between genes and the microbiome.

"Our study suggests that a lot of the genetic variation we see among these eight strains of mice is reflected in their microbiomes," notes Rey, a UW-Madison professor of bacteriology and a corresponding author of the study. "And we have evidence that the composition of the gut microbiota is controlled by the genomes of the mice. We're trying to find the genes that control the composition of the gut microbiota and (dictate) host phenotype."

In response to diet, the Wisconsin group observed a "remarkable variation" in mice whose genetics make them prone to diabetes. They also noticed an accompanying change in the makeup of the animals' gut microbiomes. Some of the bacteria, according to Rey and Attie, could be linked to metabolic traits such as body weight, and glucose and insulin levels.

The microbiome plays a crucial role in processing nutrients. Food not metabolized directly by a host like a mouse or a human is subsequently processed in the gut by the bacteria of the microbiome. As the microbes metabolize food, they produce an astonishing number of small molecules, chemicals and hormones that circulate in a host and can influence health in an animal.

Among those metabolites, perhaps as many as 20,000 in all, are what are called short-chain fatty acids, which serve as signaling molecules in the intestine and associated organs like the liver and pancreas. In particular, they are key regulators of energy and glucose.

Gut microbes also influence the physiology of the host by modifying bile acids produced by the liver, which are also processed by the microbiome to produce secondary metabolites that can exert an influence on disease and health.

Mice in the study that were put on a rich diet and received microbiome transplants helped the Wisconsin team expose functional differences attributable to two different transplanted microbiomes, including a link between the gut microbiome and insulin secretion.
-end-
CONTACT:

Federico Rey
608-890-2046
ferey@wisc.edu

Alan Attie
608-262-1372
adattie@wisc.edu

DOWNLOAD PHOTO: https://uwmadison.box.com/v/mice-microbiome

University of Wisconsin-Madison

Related Diabetes Articles:

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
More Diabetes News and Diabetes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab