Making swimming pools safer by reducing chlorine disinfection byproducts

February 17, 2021

Swimming in indoor or outdoor pools is a healthy form of exercise and recreation for many people. However, studies have linked compounds that arise from chlorine disinfection of the pools to respiratory problems, including asthma, in avid swimmers. Now, researchers reporting in ACS' Environmental Science & Technology have found that using a complementary form of disinfection, known as copper-silver ionization (CSI), can decrease disinfection byproducts and cell toxicity of chlorinated swimming pool water.

Disinfecting swimming pool water is necessary to inactivate harmful pathogens. Although an effective disinfectant, chlorine can react with organic matter and compounds introduced by swimmers, such as those in sweat, urine, sunscreens and cosmetics, to produce disinfection byproducts (DBPs). Epidemiological studies have linked DBPs to health problems, including respiratory issues, bladder cancer, and pregnancy and birth complications. One way to reduce the amount of added chlorine is through the use of complementary disinfection strategies, such as CSI, which involves generating antimicrobial copper and silver ions by electrolysis. Susan Richardson and colleagues wondered whether using CSI along with reduced chlorine levels could disinfect pool water while also reducing DBP formation and toxicity.

To find out, the researchers collected water samples from two pools treated with CSI and chlorine -- one outdoor and one indoor. They detected 71 DBPs, some of which were quantified for the first time in pools. In experiments with mammalian cells in the lab, the team found that the indoor pool samples were more toxic to cells than the outdoor samples, likely because outdoor DBPs can volatilize in the open air or degrade with sunlight over time. In indoor pool water, the lowest levels of DBP formation and toxicity were observed when the lowest amount of chlorine was used in combination with CSI. To control for factors such as number of swimmers, temperature and pH, the researchers also conducted experiments in simulated pools with a solution added that mimics human body fluids, and they observed similar results. These data suggest that using CSI with lower amounts of chlorine could be a way to make swimming safer, the researchers say.
-end-
The authors acknowledge funding from the University of South Carolina Magellan Scholarship program, the Guangxi Medical University Training Program for Distinguished Young Scholars and the National Science Foundation.

The paper's abstract will be available on February 17 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.0c06287

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Swimming Articles from Brightsurf:

A breakthrough of the mechanism of energy saving in collective swimming
Professor Xie Guangming's group in the College of Engineering at Peking University has found a simple yet previous unknown rule, explaining how do schooling fish save energy in collective motion.

Understanding the movement patterns of free-swimming marine snails
New research looks at the swimming and sinking kinematics of nine species of warm water pteropods (sea snails) to shed light on their ecology, predator-prey interactions, and vertical distributions.

Keep safe and cool in the pool: Novel chip sensor makes swimming pools safer
A new microchip that enables continuous monitoring of pH and chlorine levels in swimming pools will vastly improve water safety and hygiene for more than 2.7 million Australians as new research shows it can deliver consistent and accurate pool chemistry for reliable pool management.

Scientists reveal why tummy bugs are so good at swimming through your gut
Researchers have solved the mystery of why a species of bacteria that causes food poisoning can swim faster in stickier liquids, such as within guts.

Lehigh University engineers unlock secrets to swimming efficiency of whales, dolphins
Lehigh University MechE professor Keith Moored is PI on a recent Journal of the Royal Society Interface paper on work examining the fluid mechanics of cetacean propulsion by numerically simulating their oscillating tail fins.

Beware of swimming if you use deep brain stimulation for Parkinson's
Researchers have identified nine cases of people who lost their ability to swim after having a deep brain stimulation device implanted to control symptoms of Parkinson's disease.

Researchers find best classroom shapes for fish swimming in schools
A team of researchers has identified the best arrangements for fish swimming in schools -- formations that are superior in terms of saving energy while also optimizing speed.

Fish simulations provide new insights into energy costs of swimming
A new computational analysis suggests that maximizing swimming speeds while minimizing energy costs depends on an optimal balance between a fish's muscle dynamics and the way its size, shape, and swimming motion affect its movement through water.

Tiny swimming donuts deliver the goods
Bacteria and other swimming microorganisms evolved to thrive in challenging environments, and researchers struggle to mimic their unique abilities for biomedical technologies, but fabrication challenges created a manufacturing bottleneck.

Getting an 'eel' for the water: The physics of undulatory human swimming
A team of researchers led by the University of Tsukuba captured the 3D motion of an athlete performing undulatory swimming.

Read More: Swimming News and Swimming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.