# RUDN University physicists analyzed the role of gravity in elementary particles formation

February 17, 2021Gravity might play a bigger role in the formation of elementary particles than scientists used to believe. A team of physicists from RUDN University obtained some solutions of semi-classical models that describe particle-like waves. They also calculated the ratio between the gravitational interaction of particles and the interaction of their charges. The results of the study were published in the

*Universe*journal.

Due to their small size, the gravitational interaction between elementary particles (electrons, protons, and neutrons) is weak compared to Coulomb forces--attraction and repulsion determined by charge. For example, negatively charged electrons move around the atomic nucleus that contains positively charged protons. Therefore, the ratio of Newtonian attraction to Coulomb repulsion (or γ,) is negligible. However, on the Planck scale, i.e. at distances around 1.6?10?35 m, these forces become comparable. A team of physicists from RUDN University found solutions of existing models that correspond to particles in the Planck's range.

"Gravity can potentially play an important role in the microworld, and this assumption is confirmed by certain data. γ is considered a 'magical' dimensionless number, and we are unaware of any serious attempts to theoretically obtain such a small value of γ -- 10-40. We presented a simple model that allowed for obtaining this particular value in a natural way," said Vladimir Kassandrov, PhD, and an Assistant Professor of the Institute of Gravitation and Cosmology, RUDN University.

The team used semi-classical models based on electromagnetic field equations. They have several solutions for particles as well as solitons (stable solitary waves). In equations like this, gravity is usually not taken into consideration and is replaced with a nonlinear correction that is chosen almost arbitrarily. This is where the main issue with these models lies. However, it can be solved by adding the equations of three fundamental fields to the system. Then, following the requirements of gauge invariance (that prevent physical values from changing simultaneously with the transformation of the fields), the form of nonlinearity becomes strictly defined. The team from RUDN University used this approach to find solutions that matched the characteristics of typical elementary particles. The existence of such solutions would confirm the fundamental role of gravity in the formation of particles.

The team failed to find solutions in which the charge and mass matched elementary particles at γ<0.9, and the very possibility of their existence remains questionable. However, the scientists managed to obtain solutions to the model for γ~1. They describe charged semi-quantum objects in the Planck range (i.e. with a mass around 10?5 g and size in the order of 10?33 cm). The physicists are still unsure what these solutions correspond to. Hypothetical particles with these parameters are called maximons or planckeons. The team from RUDN University was the first to obtain a discreet energy spectrum for objects with γ tending to infinity (i.e. with electric field excluded from the model). In this case, the solution describes objects with near-solar mass.

"Although our attempt to calculate probability characteristics at γ<0.9 was not successful, the model still could have such particle-like solutions. In the future, we would like to shed light on this problem that is intriguing for physicists by extremely complex from the point of view of mathematics. We want to find out if solutions for elementary particles really exist in the three-field model", added Vladimir Kassandrov from RUDN University.

-end-

RUDN University

## Related Gravity Articles from Brightsurf:

Space worms experiment reveals gravity affects genes

Living at low gravity affects cells at the genetic level, according to a study of worms in space.

The gravity of play: Quantifying what we enjoy about games

Scientists from the Japan Advanced Institute of Science and Technology have created a mathematical model combining aspects from psychology and the physics of motion to objectively analyze the appeal of games and its evolution throughout history.

Einstein's description of gravity just got much harder to beat

Astrophysicists put general relativity to a new test with black hole images.

MUSC researchers test brain stimulation in zero gravity

How does zero gravity affect astronauts' brains? MUSC scientists took to the skies as they try to figure that out.

Gravity causes homogeneity of the universe

Gravity can accelerate the homogenization of space-time as the universe evolves.

Gravity wave insights from internet-beaming balloons

A better understanding of how gravity waves in the upper atmosphere interact with the jet stream, polar vortex and other phenomena could be key to improved weather predictions and climate models.

A stepping stone for measuring quantum gravity

A group of theoretical physicists, including two physicists from the University of Groningen, have proposed a 'table-top' device that could measure gravity waves.

Surface tension, not gravity, drives viscous bubble collapse

By demonstrating that surface tension -- not gravity -- drives the collapse of surface bubbles in viscous liquids, a new study flips the previous understanding of how viscous bubbles pop on its head.

How earthquakes deform gravity

Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Physicists mash quantum and gravity and find time, but not as we know it

A University of Queensland-led international team of researchers say they have discovered ''a new kind of quantum time order''.

Read More: Gravity News and Gravity Current Events

Living at low gravity affects cells at the genetic level, according to a study of worms in space.

The gravity of play: Quantifying what we enjoy about games

Scientists from the Japan Advanced Institute of Science and Technology have created a mathematical model combining aspects from psychology and the physics of motion to objectively analyze the appeal of games and its evolution throughout history.

Einstein's description of gravity just got much harder to beat

Astrophysicists put general relativity to a new test with black hole images.

MUSC researchers test brain stimulation in zero gravity

How does zero gravity affect astronauts' brains? MUSC scientists took to the skies as they try to figure that out.

Gravity causes homogeneity of the universe

Gravity can accelerate the homogenization of space-time as the universe evolves.

Gravity wave insights from internet-beaming balloons

A better understanding of how gravity waves in the upper atmosphere interact with the jet stream, polar vortex and other phenomena could be key to improved weather predictions and climate models.

A stepping stone for measuring quantum gravity

A group of theoretical physicists, including two physicists from the University of Groningen, have proposed a 'table-top' device that could measure gravity waves.

Surface tension, not gravity, drives viscous bubble collapse

By demonstrating that surface tension -- not gravity -- drives the collapse of surface bubbles in viscous liquids, a new study flips the previous understanding of how viscous bubbles pop on its head.

How earthquakes deform gravity

Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Physicists mash quantum and gravity and find time, but not as we know it

A University of Queensland-led international team of researchers say they have discovered ''a new kind of quantum time order''.

Read More: Gravity News and Gravity Current Events

Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.