SuperAger brains resist protein tangles that lead to Alzheimer's

February 17, 2021

CHICAGO - A new Northwestern Medicine study showed cognitive SuperAgers have resistance to the development of fibrous tangles in a brain region related to memory and which are known to be markers of Alzheimer's disease.

The tangles are made of the tau protein which forms structures that transport nutrients within the nerve cell. These tangles disrupt the cell's transport system, hampering communication within the neuron and preventing nutrients from performing their particular job within the cell. The end result of tangle formation is cell death.

"The results suggest resistance to age-related tau degeneration in the cortex may be one factor contributing to preserved memory in SuperAgers," said lead study author Tamar Gefen, an assistant professor of psychiatry and behavioral sciences at Northwestern University Feinberg School of Medicine.

"SuperAgers," a term coined by the Northwestern Mesulam Center for Cognitive Neurology and Alzheimer's Disease, are unique individuals over age 80 who show outstanding memory capacity at a level consistent with individuals 20 to 30 years younger. At the Center, SuperAgers are evaluated annually and may choose to donate their brains for post-mortem evaluation by Northwestern scientists.

This study quantified the amount of amyloid plaques and tau-containing neurofibrillary tangles in part of the brain that is heavily responsible for memory, known as the entorhinal cortex, in seven SuperAgers compared with six age-matched cognitively-healthy individuals. The findings showed significantly less tangles in the entorhinal cortex of SuperAgers than those of cognitively healthy controls by a difference of nearly three-fold.

"This finding helps us better identify the factors that may contribute to the preservation of memory in old age," Gefen said. "This research highlighted there are gradients of vulnerability to cell death in the brain."

"Individuals with significant memory impairment due to Alzheimer's disease showed nearly 100 times more tangles in the entorhinal cortex compared to SuperAgers," Gefen said. "There is a strong relationship between tau-tangles and memory loss, and these findings in a unique SuperAging cohort could guide research in a new direction."

The study, "Paucity of Entorhinal Cortex Pathology of the Alzheimer's Type in SuperAgers with Superior Memory Performance", was published in Cerebral Cortex on Feb. 17.

The seminal characteristics of Alzheimer's disease are amyloid plaques and tau-containing neurofibrillary tangles found in the brains of individuals at death after autopsy. While these plaques and tangles are most commonly found in the brains of those with memory impairment, they are also found in cognitively healthy elderly individuals but in a more limited distribution.

Because advancing age is typically associated with declining memory abilities and increased risk of developing Alzheimer's disease, the Center studies SuperAgers to better understand what is going right in their brains.

The study also found there were no significant differences in amyloid plaque density in SuperAgers compared to cognitively healthy older persons.

"Many investigators have long thought that amyloid plaques are drivers of memory loss, which isn't what we found," Gefen said.

Gefen wants to explore the interaction of genetics and environment/lifestyle, and their collective impact, on the cellular level in post-mortem brains of SuperAgers.

"Why are memory cells selectively vulnerable to tangles in the first place?" she asked. "What is it about the cellular environment in the brains of SuperAgers that seem to protect them from tangles? Are the behaviors of SuperAgers somehow building up resistance in the brain?"

"To address these questions, we can study the molecular, biochemical, and genetic components of these specific memory cells, in SuperAgers, that are typically targeted by Alzheimer's. And, certainly, we must take their personal narratives (history, proclivities, behaviors, cultures) into account when making conclusions about their unique neuroanatomic profiles."
-end-
Other Northwestern authors include Allegra Kawles, Beth Makowski-Woidan, Janessa Engelmeyer, Ivan Ayala, Payam Abbassian, Hui Zhang, Sandra Weintraub, Margaret Flanagan, Qinwen Mao, Eileen Bigio, Emily Rogalski, Marsel Mesulam and Changiz Geula.

The research was supported by grants P30AG013854, R01AG045571, 1R01AG067781, R01AG062566, R56AG045571 from the National Institute on Aging of the National Institute of Health.

Northwestern University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.