Discovery of biomarker could help predict Alzheimer's years before symptoms emerge

February 17, 2021

A unique brain protein measured in the blood could be used to diagnose Alzheimer's disease decades before symptoms develop, according to new Edith Cowan University (ECU) research.

Published in Nature journal Translational Psychiatry, the study is the first to find that people with elevated glial fibrillary acidic protein (GFAP) in the blood also have increased amyloid beta in the brain, a known indicator of Alzheimer's disease.

GFAP is a protein normally found in the brain, but it is released into the blood when the brain is damaged by early Alzheimer's disease.

Alzheimer's disease affects more than 340,000 Australians and more than 35 million people in the world. Current diagnosis involves a brain scan or spinal fluid tests.

The study's lead researcher, ECU Professor Ralph Martins AO, said the discovery offered a promising new avenue for early diagnosis.

"Blood biomarkers are becoming an exciting alternative to the existing expensive and invasive methods of diagnosing Alzheimer's disease," said Professor Martins.

"The GFAP biomarker could be used to develop a simple and quick blood test to detect if a person is at very high risk of developing Alzheimer's.

"Early diagnosis is critical to allow us to implement medication and lifestyle interventions that can help delay the progression of the disease and give people more time before symptoms develop."

A step forward

Alzheimer's disease is a degenerative brain condition that can develop silently over years. It leads to memory decline and loss of thinking skills. There is no known cure.

According to Professor Martins, the development of an early blood test for the disease will be revolutionary.

"The technology for detecting biomarkers has developed rapidly, so I think we will begin to see diagnostic blood tests being used for Alzheimer's in the next few years.

"The current brain imaging and lumbar puncture tests are expensive and invasive and not widely available to the general population. A blood test could open up possibilities for early diagnosis of millions of people and thereby enable earlier interventions."

Future hope

The study involved 100 Australians aged between 65 and 90 years of age with no symptoms of Alzheimer's disease.

Professor Martins said further research is needed to understand GFAP in Alzheimer's disease.

"Longitudinal studies will provide more insight into how GFAP relates to the progression of Alzheimer's, which may allow us to determine when symptoms will emerge."

Professor Martins is also part of a large study exploring interventions for Alzheimer's disease, with the ultimate goal of finding medications and lifestyle factors that can halt or delay the development of the disease.

"Diagnosis and intervention techniques go hand in hand - if we can use blood biomarkers to detect Alzheimer's sooner, we can also intervene sooner," he said.
-end-
The study was a collaboration with Dr Pratishtha Chatterjee from Macquarie University, who is the first author on the paper.

Professor Martins is the director of the Centre of Excellence for Alzheimer's Disease Research and Care and also leads the Western Australian site of the Dominantly Inherited Alzheimer's Network (DIAN) - a global longitudinal study of people with genetically inherited Alzheimer's disease.
-end-
'Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer's disease' was published in Translational Psychiatry.

Edith Cowan University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.