Electrons living on the edge

February 17, 2021

Tsukuba, Japan - Scientists at the University of Tsukuba demonstrated the possibility of electrons moving as if they were massless when certain materials called "topological insulators" are irradiated with laser beams. This work may lead to a new class of highly efficient electronic devices and photonic crystals.

Conventional electronic devices rely primarily on silicon crystals. From the point of view of electrons that make up the electrical signals coursing through these materials, the systems are so big as to be practically endless. This causes most of the electronic structures to resemble the mathematical solutions of a "bulk" infinite repeating lattice. However, recent advances in solid state physics have pointed to the possibility of "topological insulators," which are materials that are usually electrical insulators, but have states that exist at the edge of the material. These surface states created by the abrupt transition from the material to empty space have special properties, such as protection from being disrupted by disorder, as can happen with other electronic states. In certain cases, the electrons can move so freely they act as if they had no mass at all. As intriguing as topological states are, much is still not known about how to generate them and how they behave.

Now, a research team at the University of Tsukuba has used theoretical calculations to predict the electronic states that can be formed when a laser excites a topological insulator. This can help fill in gaps in our knowledge about these materials, because empirical data is difficult to obtain. The researchers were able to show that Dirac states, in which electrons start to appear massless, can be generated this way. "Experiments on non-equilibrium topological states remain scarce, even though they have the potential to provide a new platform to create unexpected massless Dirac states," senior author Ken-ichi Hino says. The team was able to explain their findings as resulting from the creation of fourfold accidental degeneracies at the high-symmetry points. "We hope our work will accelerate the process of investigating topological insulators," Professor Hino says. The results of this project may help pave the way for new computers systems that waste less energy on the basis of these materials.
The work is published in Scientific Reports as "Edge states of Floquet-Dirac semimetal in a laser?driven semiconductor quantum-well" (DOI: 10.1038/s41598-021-82230-3).

University of Tsukuba

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.