Scientists Seek First Glimpse Of Solar Features During February 26 Solar Eclipse

February 17, 1998

Scientists from several research institutes will aim new detectors at the sun's corona during the February 26 solar eclipse, searching for structures they've never before observed. The researchers are funded in part by the National Science Foundation (NSF), and are from several research institutes, including the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. The scientists will use NSF's C-130 Hercules aircraft to conduct many of their studies.

This eclipse, which takes place in totality over the Caribbean, promises to be one of the most heavily studied in recent history. The data scientists gather could lead to better prediction of the coronal mass ejections that launch solar storms -- the magnetic disturbances that play havoc with communications and electric power grids here on earth. The expedition to be conducted in late February has been inspired by new theories and new technology, the researchers say.

The corona, or outer atmosphere of the sun, is a million times dimmer than the solar disk itself. Scientists can observe the corona at any time using a coronagraph -- an instrument that blacks out the disk -- but sunlight scattered by earth's atmosphere masks the very faint coronal light. A "real" eclipse gives much better results, because the moon blocks sunlight before it reaches the earth's atmosphere and is scattered.

Solar physicists can't send instruments too close to their subject because its heat would melt their probes. In spite of that, however, the structure of the magnetic fields of the corona has been theorized since the late 1800s. These fields, while weak, are sufficiently strong that they underlie and organize everything that happens in the corona.

"Nobody has actually measured the strength of the magnetic field under average coronal conditions, because it's so weak," explains NCAR solar physicist Philip Judge. Because of the faint signal, exacting observations must be made with minimal interference from the earth's atmosphere. Detection instruments mounted on the C-130 aircraft will enable scientists to make the needed measurements, as the aircraft can fly above most of the absorption introduced by water vapor into the earth's atmosphere.

Detection of the magnetic field's signal could build the case for constructing a measuring device called a coronal magnetograph. The kinds of questions that could then be addressed include the nature of the evolution of coronal fields during the solar cycle, and what launches solar flares and the coronal mass ejections that cause disrupting "space weather." The late February effort is a first step, maintains Judge. "We won't really know what's going on in the corona, until we can measure the magnetic field."

A new infrared camera will also make its debut on the C-130. The camera's infrared array detector was recently declassified for peacetime use. It will be used to detect interplanetary dust particles, invisible to sensors so far. The glare of the sun normally obscures such infrared emissions, so an eclipse is a rare opportunity to look for this dust with new technology.
-end-


National Science Foundation

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.