How nature's patterns form

February 18, 2011

When people on airplanes ask Alan Newell what he works on, he tells them "flower arrangements."

He could also say "fingerprints" or "sand ripples" or "how plants grow."

"Most patterns you see, including the ones on sand dunes or fish or tigers or leopards or in the laboratory - even the defects in the patterns - have many universal features," said Newell, a Regents' Professor of Mathematics at the University of Arizona.

"All these different systems exhibit strikingly similar features when it comes to the patterns they form," he said. "Patterns arise in systems when they're under some kind of stress, applied stress."

Newell will be talking about the universality of patterns in nature and how those patterns are created, with an emphasis on plants, on Friday, Feb. 18 at the 2011 American Association for the Advancement of Science annual meeting at the Washington Convention Center in Washington, D.C.

Newell's talk, "The Universal Nature of Fibonacci Patterns," is scheduled for 9 a.m. EST and is part of the symposium, "The Growth of Form in Mathematics, Physics and Biology," to be held in Room 147A of the Washington Convention Center. The symposium begins at 8 a.m. EST.

The symposium honors the 150th anniversary of the birth of mathematical biologist D'Arcy Wentworth Thompson.

In 1917, Thompson published an extremely influential book, "On Growth and Form," in which he argued that biological forms are controlled more by the laws of physics than by evolution.

Newell agrees that many of the biological - and non-biological - forms in nature are the products of physical forces, rather than evolutionary ones.

In his talk, he will discuss how the arrangement of flowers, bracts, florets and stickers near the growth shoots of plants - known as phyllotaxis -- is a consequence of biochemically and mechanically induced pattern-forming instabilities.

"All the lovely patterns on plants have their origins in mechanical forces and biochemical processes," he said.

Newell and his students approach the problem of patterns in plants from a mechanistic point of view, he said.

"We look at the phenomenon we're interested in, and we learn about it, we read about it, we find out what other people say about it, and we look at the experimental evidence," he said. "Then we try to capture what we see using mathematical models."

Patterns arise when the symmetry of a system is broken, Newell said. The similarity in patterns from system to system occur when the systems have similar symmetry, rather than because the systems are made from the same materials.

"The mathematics elegantly captures the fact that pattern structure depends more on shared geometrical symmetries than material properties, because the simplified equations for all these very different situations turn out to be the same," he said.

Newell said, "Mathematics is like a good poem, which separates the superfluous from the essentials and fuses the essentials into a kernel of truth."
-end-
Researcher contact:
Alan Newell
520-626-4885
anewell@math.arizona.edu

Media contact:
Mari N. Jensen
520-626-9635
mnjensen@email.arizona.edu

University of Arizona

Related Mathematics Articles from Brightsurf:

A new method for boosting the learning of mathematics
How can mathematics learning in primary school be facilitated? UNIGE has developed an intervention to promote the learning of math in school.

Could mathematics help to better treat cancer?
Impaired information processing may prevent cells from perceiving their environment correctly; they then start acting in an uncontrolled way and this can lead to the development of cancer.

People can see beauty in complex mathematics, study shows
Ordinary people see beauty in complex mathematical arguments in the same way they can appreciate a beautiful landscape painting or a piano sonata.

Improving geothermal HVAC systems with mathematics
Sustainable heating, ventilation, and air conditioning systems, such as those that harness low-enthalpy geothermal energy, are needed to reduce collective energy use and mitigate the continued effects of a warming climate.

How the power of mathematics can help assess lung function
Researchers at the University of Southampton have developed a new computational way of analyzing X-ray images of lungs, which could herald a breakthrough in the diagnosis and assessment of chronic obstructive pulmonary disease (COPD) and other lung diseases.

Mathematics pushes innovation in 4-D printing
New mathematical results will provide a potential breakthrough in the design and the fabrication of the next generation of morphable materials.

More democracy through mathematics
For democratic elections to be fair, voting districts must have similar sizes.

How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.

US educators awarded for exemplary teaching in mathematics
Janet Heine Barnett, Caren Diefenderfer, and Tevian Dray were named the 2017 Deborah and Franklin Tepper Haimo Award winners by the Mathematical Association of America (MAA) for their teaching effectiveness and influence beyond their institutions.

Authors of year's best books in mathematics honored
Prizes for the year's best books in mathematics were awarded to Ian Stewart and Tim Chartier by the Mathematical Association of America (MAA) on Jan.

Read More: Mathematics News and Mathematics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.