Real or virtual: Dartmouth scientists ask -- can we tell the difference?

February 18, 2016

HANOVER, N.H. - A Dartmouth College-led study shows that people find it increasingly difficult to distinguish between computer-generated images and real photos, but that a small amount of training greatly improves their accuracy.

The findings, which have implications for the legality and prosecution of child pornography, appear in the journal ACM Transactions on Applied Perception. A PDF is available on request.

As 3-D rendering software and hardware become more powerful, the computer-generated characters they create for film making, video games, advertising and other venues have become more photo-realistic. But the drive to create virtual characters that are indistinguishable from human characters has also given rise to complex forensic and legal issues, such as the need to distinguish between computer-generated and photographic images of child pornography, says senior author Hany Farid, a professor of computer science and a pioneering researcher in digital forensics at Dartmouth.

"As computer-generated images quickly become more realistic, it becomes increasingly difficult for untrained human observers to make this distinction between the virtual and the real," Farid says. "This can be problematic when a photograph is introduced into a court of law and the jury has to assess its authenticity."

Legal background: In their new study, Farid's team conducted perceptual experiments in which 60 high-quality computer-generated and photographic images of men's and women's faces were shown to 250 observers. Each observer was asked to classify each image as either computer generated or photographic. Observers correctly classified photographic images 92 percent of the time, but correctly classified computer-generated images only 60 percent of the time.

In a follow-up experiment, the researchers found that when a second set of observers was provided some training prior to the experiment, their accuracy on classifying photographic images fell slightly to 85 percent but their accuracy on computer-generated images jumped to 76 percent.

With or without training, observers performed much worse than Farid's team observed five years ago in a study when computer-generated imagery was not as photo-realistic.

"We expect that as computer-graphics technology continues to advance, observers will find it increasingly difficult to distinguish computer-generated from photographic images," Farid says. "While this can be considered a success for the computer-graphics community, it will no doubt lead to complications for the legal and forensic communities. We expect that human observers will be able to continue to perform this task for a few years to come, but eventually we will have to refine existing techniques and develop new computational methods that can detect fine-grained image details that may not be identifiable by the human visual system."The study, which included Dartmouth student Olivia Holmes and Professor Martin Banks at the University of California, Berkeley, was supported by the National Science Foundation.

Dartmouth Professor Hany Farid is available to comment at farid@cs.dartmouth.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Dartmouth College

Related Computer Articles from Brightsurf:

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Digitize your dog into a computer game
Researchers from CAMERA at the University of Bath have developed motion capture technology that enables you to digitise your dog without a motion capture suit and using only one camera.

Stabilizing brain-computer interfaces
Researchers from Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt) have published research in Nature Biomedical Engineering that will drastically improve brain-computer interfaces and their ability to remain stabilized during use, greatly reducing or potentially eliminating the need to recalibrate these devices during or between experiments.

Computer-generated genomes
Professor Beat Christen, ETH Zurich to speak in the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Christen will describe how computational algorithms paired with chemical DNA synthesis enable digital manufacturing of biological systems up to the size of entire microbial genomes.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

A computer that understands how you feel
Neuroscientists have developed a brain-inspired computer system that can look at an image and determine what emotion it evokes in people.

Computer program looks five minutes into the future
Scientists from the University of Bonn have developed software that can look minutes into the future: The program learns the typical sequence of actions, such as cooking, from video sequences.

Computer redesigns enzyme
University of Groningen biotechnologists used a computational method to redesign aspartase and convert it to a catalyst for asymmetric hydroamination reactions.

Mining for gold with a computer
Engineers from Texas A&M University and Virginia Tech report important new insights into nanoporous gold -- a material with growing applications in several areas, including energy storage and biomedical devices -- all without stepping into a lab.

Teaching quantum physics to a computer
An international collaboration led by ETH physicists has used machine learning to teach a computer how to predict the outcomes of quantum experiments.

Read More: Computer News and Computer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.