Nav: Home

Diversity on land is not higher today than in the past, study shows

February 18, 2019

The rich levels of biodiversity on land seen across the globe today are not a recent phenomenon: diversity on land has been similar for at least the last 60 million years, since soon after the extinction of the dinosaurs.

According to a new study led by researchers at the University of Birmingham and involving an international team of collaborators, the number of species within ecological communities on land has increased only sporadically through geological time, with rapid increases in diversity being followed by plateaus lasting tens of millions of years.

Previously, many scientists have argued that diversity increased steadily through geological time, which would mean that biodiversity today is much greater than it was tens of millions of years ago. But building an accurate picture of how land diversity was assembled is challenging because the fossil record generally becomes less complete further back in time. By using modern computing techniques, capable of analysing hundreds of thousands of fossils, patterns are starting to emerge that challenge this view.

The researchers, from the University of Birmingham's School of Geography, Earth and Environmental Sciences and other institutions in the UK, USA and Australia, were able to study fossil data collected by palaeontologists over the past 200 years at around 30,000 different fossil sites around the globe. The team focused on data from land vertebrates dating back to the very earliest appearance of this group nearly 400 million years ago.

They found that the average number of species within ecological communities of land vertebrates have not increased for tens of millions of years. Their results, published in Nature Ecology & Evolution, suggest that interactions between species, including competition for food and space, will limit the overall number of species that can co-exist.

Lead researcher, Dr Roger Close, says: "Scientists often think that species diversity has been increasing unchecked over millions of years, and that diversity is much greater today than it was in the distant past. Our research shows that numbers of species within terrestrial communities are limited over long timescales, which contradicts the results of many experiments in modern ecological communities - now we need to understand why."

One reason why diversity within ecological communities does not increase unchecked on long timescales could be because resources used by species, such as food and space, are finite. Competition for these resources may prevent new species invading ecosystems and lead to a balance between rates of speciation and extinction. After the origins of major groups of animals, or large-scale ecological disruptions like mass extinctions, though, increases in diversity may happen abruptly - on geological, if not human timescales - and are again followed by long periods where no increases occur.

He adds: "Contrary to what you might expect, the largest increase in diversity within land vertebrate communities came after the mass extinction that wiped out the dinosaurs, 66 million years ago, at the end of the Cretaceous period. Within just a few million years, local diversity had increased to two or three times that of pre-extinction levels - driven primarily by the spectacular success of modern mammals."

Professor Richard Butler, who was also part of the research team, said "Our work provides an example of the combined power of the fossil record and modern statistical approaches to answer major questions about the origins of modern biodiversity. By understanding how biodiversity has changed in the past, we may be able to better understand the likely long-term impact of the current biodiversity crisis".
-end-
The research is funded by the European Research Council through the European Union's Horizon 2020 research and innovation programme.

Notes to editor:

The University of Birmingham is ranked among the world's top 100 institutions, its work brings people from across the world to Birmingham, including researchers and teachers and more than 6,500 international students from over 150 countries. It is ranked 7th in the UK for Graduate Employability (Destination of Leavers from Higher Education survey 2014/15) and was named University of the Year for Graduate Employment 2015/16 by The Times and Sunday Times.

Close et al (2019). 'Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale'. Nature Ecology and Evolution. DOI: 10.1038/s41559-019-0811-8

Research was funded by the European Research Council through the European Union's Horizon 2020 research and innovation programme.

Research was led by the University of Birmingham, and also involved researchers from the University of Oxford, Macquarie University, the Smithsonian Institute, the University of Bath, the Natural History Museum, London, Imperial College London, and George Mason University.

University of Birmingham

Related Biodiversity Articles:

Biodiversity is 3-D
The species-area relationship (SAC) is a long-time considered pattern in ecology and is discussed in most of academic Ecology books.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
Temperature drives biodiversity
Why is the diversity of animals and plants so unevenly distributed on our planet?
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
Biodiversity loss in forests will be pricey
A new global assessment of forests -- perhaps the largest terrestrial repositories of biodiversity -- suggests that, on average, a 10 percent loss in biodiversity leads to a 2 to 3 percent loss in the productivity, including biomass, that forests can offer.
Biodiversity falls below 'safe levels' globally
Levels of global biodiversity loss may negatively impact on ecosystem function and the sustainability of human societies, according to UCL-led research.
Unravelling the costs of rubber agriculture on biodiversity
A striking decline in ant biodiversity found on land converted to a rubber plantation in China.
Nitrogen is a neglected threat to biodiversity
Nitrogen pollution is a recognized threat to sensitive species and ecosystems.

Related Biodiversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"