Nav: Home

Tuberculosis: Commandeering a bacterial 'suicide' mechanism

February 18, 2019

The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein. The European team of scientists behind this discovery is coordinated by researchers from the Institute of Pharmacology and Structural Biology (IPBS--CNRS/UPS) and the European Molecular Biology Laboratory (EMBL). (1) Their findings are published in Molecular Cell (February 18, 2019). The team is now seeking to appropriate this "suicide" mechanism for therapeutic purposes.

Bacteria synthesize molecules that are toxic to themselves. When exposed to a harsh environment, these toxins slow the growth of the bacterial population until more favorable conditions develop. Some toxins even kill the bacteria that produced them. The biological purpose of this "suicide" is still a subject of debate. It may function as an antiviral defense mechanism, killing infected bacteria to spare uninfected neighbors. Or, when faced with nutrient scarcity, it may serve to "sacrifice" a few for the benefit of the many. Under normal conditions, bacteria produce antidote proteins that neutralize the toxins.

The researchers have identified one such "suicide toxin," called MbcT, in the bacteria responsible for tuberculosis, Mycobacterium tuberculosis. If not thwarted by its antitoxin, MbcA, the MbcT toxin will kill M. tuberculosis by breaking down its store of NAD--a small molecule critical to sustaining life--through a newly identified reaction.

The team of researchers led by Olivier Neyrolles, a CNRS researcher at the IPBS, has demonstrated the therapeutic potential of this toxin. They infected human and mouse cells with a strain of M. tuberculosis lacking this toxin/antitoxin system--but in which they could artificially trigger production of the MbcT toxin. Toxin activation drastically reduced the number of bacteria infecting the cells and increased the mouse survival rate.

These findings pave the way for a novel treatment targeting tuberculosis, which remains one of the top ten causes of death worldwide. And the antibiotic resistance developed by certain strains of Mycobacterium tuberculosis only underscores the urgency. The EMBL researchers have already determined the 3D structure of the MbcT-MbcA complex, and the different teams are now striving to identify compounds that can free the toxin from the antidote with which it is coupled. These molecules may also help fight other infectious diseases because analogous toxin/antitoxin systems have been detected in other pathogenic bacteria.
-end-
The French National Research Agency (ANR), the Fondation pour la Recherche Médicale (FRM), and the Fondation Bettencourt Schueller all helped fund these investigations.

Notes: (1) Team jointly led by researchers from the IPBS (CNRS/UPS) and the EMBL (Hamburg, Germany), and including researchers from the Francis Crick Institute (United Kingdom) and the Laboratory of Microbiology and Molecular Genetics (CNRS/UPS) at the Center for Integrative Biology of Toulouse (CNRS/UPS).

CNRS

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.