Nav: Home

Exotic spiraling electrons discovered by physicists

February 18, 2019

Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.

It's called a "chiral surface exciton," and it consists of particles and anti-particles bound together and swirling around each other on the surface of solids, according to a study in the Proceedings of the National Academy of Sciences.

Chiral refers to entities, like your right and left hands, that match but are asymmetrical and can't be superimposed on their mirror image.

Excitons form when intense light shines on solids, kicking negatively charged electrons out of their spots and leaving behind positively charged "holes," according to lead author Hsiang-Hsi (Sean) Kung, a graduate student in Physics Professor Girsh Blumberg's Rutgers Laser Spectroscopy Lab at Rutgers University-New Brunswick.

The electrons and holes resemble rapidly spinning tops. The electrons eventually "spiral" towards the holes, annihilating each other in less than a trillionth of a second while emitting a kind of light called "photoluminescence." This finding has applications for devices such as solar cells, lasers and TV and other displays.

The scientists discovered chiral excitons on the surface of a crystal known as bismuth selenide, which could be mass-produced and used in coatings and other materials in electronics at room temperature.

"Bismuth selenide is a fascinating compound that belongs to a family of quantum materials called 'topological insulators,'" said senior author Blumberg, a professor in the Department of Physics and Astronomy in the School of Arts and Sciences. "They have several channels on the surface that are highly efficient in conducting electricity."

The dynamics of chiral excitons are not yet clear and the scientists want to use ultra-fast imaging to further study them. Chiral surface excitons may be found on other materials as well.
-end-
Rutgers co-authors include doctoral students Xueyun Wang and Alexander Lee, and Board of Governors Professor Sang-Wook Cheong in Rutgers Center for Emergent Materials, who developed the ultra-pure crystals for this study. Professor Dmitrii Maslov and graduate student Adamya Goyal at the University of Florida and principal investigator Alexander Kemper at North Carolina State University contributed to theory development and the interpretation of results.
-end-


Rutgers University

Related Solar Cells Articles:

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.