Nav: Home

Climate change makes summer weather stormier yet more stagnant

February 18, 2019

Climate change is shifting the energy in the atmosphere that fuels summertime weather, which may lead to stronger thunderstorms and more stagnant conditions for midlatitude regions of the Northern Hemisphere, including North America, Europe, and Asia, a new MIT study finds.

Scientists report that rising global temperatures, particularly in the Arctic, are redistributing the energy in the atmosphere: More energy is available to fuel thunderstorms and other local, convective processes, while less energy is going toward summertime extratropical cyclones -- larger, milder weather systems that circulate across thousands of kilometers. These systems are normally associated with winds and fronts that generate rain.

"Extratropical cyclones ventilate air and air pollution, so with weaker extratropical cyclones in the summer, you're looking at the potential for more poor air-quality days in urban areas," says study author Charles Gertler, a graduate student in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS). "Moving beyond air quality in cities, you have the potential for more destructive thunderstorms and more stagnant days with perhaps longer-lasting heat waves."

Gertler and his co-author, Associate Professor Paul O'Gorman of EAPS, are publishing their results in the Proceedings of the National Academy of Sciences.

A shrinking gradient

In contrast to more violent tropical cyclones such as hurricanes, extratropical cyclones are large weather systems that occur poleward of the Earth's tropical zone. These storm systems generate rapid changes in temperature and humidity along fronts that sweep across large swaths of the United States. In the winter, extratropical cyclones can whip up into Nor'easters; in the summer, they can bring everything from general cloudiness and light showers to heavy gusts and thunderstorms.

Extratropical cyclones feed off the atmosphere's horizontal temperature gradient -- the difference in average temperatures between northern and southern latitudes. This temperature gradient and the moisture in the atmosphere produces a certain amount of energy in the atmosphere that can fuel weather events. The greater the gradient between, say, the Arctic and the equator, the stronger an extratropical cyclone is likely to be.

In recent decades, the Arctic has warmed faster than the rest of the Earth, in effect shrinking the atmosphere's horizontal temperature gradient. Gertler and O'Gorman wondered whether and how this warming trend has affected the energy available in the atmosphere for extratropical cyclones and other summertime weather phenomena.

They began by looking at a global reanalysis of recorded climate observations, known as the ERA-Interim Reanalysis, a project that has been collecting available satellite and weather balloon measurements of temperature and humidity around the world since the 1970s. From these measurements, the project produces a fine-grained global grid of estimated temperature and humidity, at various altitudes in the atmosphere.

From this grid of estimates, the team focused on the Northern Hemisphere, and regions between 20 and 80 degrees latitude. They took the average summertime temperature and humidity in these regions, between June, July, and August for each year from 1979 to 2017. They then fed each yearly summertime average of temperature and humidity into an algorithm, developed at MIT, that estimates the amount of energy that would be available in the atmosphere, given the corresponding temperature and humidity conditions.

"We can see how this energy goes up and down over the years, and we can also separate how much energy is available for convection, which would manifest itself as thunderstorms for example, versus larger-scale circulations like extratropical cyclones," O'Gorman says.

Seeing changes now

Since 1979, they found the energy available for large-scale extratropical cyclones has decreased by 6 percent, whereas the energy that could fuel smaller, more local thunderstorms has gone up by 13 percent.

Their results mirror some recent evidence in the Northern Hemisphere, suggesting that summer winds associated with extratropical cyclones have decreased with global warming. Observations from Europe and Asia have also shown a strengthening of convective rainfall, such as from thunderstorms.

"Researchers are finding these trends in winds and rainfall that are probably related to climate change," Gertler says. "But this is the first time anyone has robustly connected the average change in the atmosphere, to these subdaily timescale events. So we're presenting a unified framework that connects climate change to this changing weather that we're seeing."

The researchers' results estimate the average impact of global warming on summertime energy of the atmosphere over the Northern Hemisphere. Going forward, they hope to be able to resolve this further, to see how climate change may affect weather in more specific regions of the world.

"We'd like to work out what's happening to the available energy in the atmosphere, and put the trends on a map to see if it's, say, going up in North America, versus Asia and oceanic regions," O'Gorman says. "That's something that needs to be studied more."
-end-
This research was supported by the National Science Foundation.

Related links

ARCHIVE:

Varied increases in extreme rainfall with global warming

ARCHIVE:

3Q: Refocusing climate research in a new era

ARCHIVE:

Study finds more extreme storms ahead for California

ARCHIVE:

Paul O'Gorman: Extreme storm modeler

ARCHIVE:

Snowfall in a warmer world

Massachusetts Institute of Technology

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.