'Arapuca', a device developed in Brazil for international neutrino experiment, is enhanced

February 18, 2019

A critical part of one of the largest recent particle physics experiments was developed in Brazil. The Arapuca is a light detector to be installed in the Deep Underground Neutrino Experiment (DUNE) - a project that is searching to discover new properties of neutrinos, fundamental particles with very little mass that travel at close to the speed of light.

The X-Arapuca is an enhanced version of the light detector developed by professors Ettore Segreto of the Gleb Wataghin Physics Institute of the University of Campinas (UNICAMP), and Ana Amélia Bergamini Machado, collaborating researcher from the same institution. The researchers are supported by FAPESP through the Liquid Argon Project at UNICAMP.

The device was the subject of the session given on Day One of FAPESP Week London, an event taking place February 11-12, 2019.

The detector will be installed in the DUNE, which is expected to begin construction in the United States in 2021 (read more about the project at: agencia.fapesp.br/25556).

DUNE will be equipped with two huge detectors. The first will be close to the source at the Fermi National Laboratory (Fermilab) in Batavia, Illinois. The lab's particle accelerator will produce a powerful neutrino beam.

That beam will travel to the second, much larger detector, 1,300 km away, at the Sanford Underground Research Facility in South Dakota, holding 70,000 tons of liquid argon and located 1.5 km underground. The site will also hold 60,000 X-Arapuca detectors that will be responsible for detecting the light emitted by the beam. Each X-Arapuca will measure 10 x 8 cm.

The entire system is being tested on a smaller scale - the ProtoDUNE - in operation since September 2018 at the European Organization for Nuclear Research (CERN) on the border between France and Switzerland.

Trap effect

"This is the most recent development of the Arapuca. It provides even greater efficiency based on the same principle while introducing minor modifications. We are running the tests at UNICAMP and the detector seems to be very good. In addition to that, construction is simpler," Segreto told.

One of the modifications was the inclusion of a guide light - a device made out of a material that more efficiently traps the photons inside the detector. It is easier to measure the properties of light by capturing more of it. "The idea of these larger detectors is to direct even more photons to the active detectors, silicon sensors that are much smaller," Segreto said.

These small sensors are expected to be the only parts of the X-Arapuca that will not be made in Brazil. "The idea is that all the other components will be made in the country as will the device's assembly," said the researcher who will lead the entire light detection portion of the experiment.

The light will be produced when the neutrino beam reaches the argon liquid in the DUNE's principal detector and produces scintillation. Among the factors that influenced the choice for liquid argon is its scintillation capacity, which is much larger than the water used in other experiments like Japan's Super-Kamiokande.

The argon will be distributed in four modules, each holding argon kept in a liquid state by refrigeration to -184° C. Liquid argon will also make it possible to obtain 3D images of the interactions with an unprecedented amount of detail and precision.

The experiment is expected to provide answers about how the Universe was formed, such as what is known as the "charge-parity symmetry violation of the leptons," which just after the Big Bang would have produced a small surplus of matter over antimatter. This surplus is the Universe we know.

International collaboration

Stefan Söldner-Rembold, a professor at the University of Manchester and one of the speakers at the event, commended Brazil's participation in the experiment. The researcher spoke on behalf of UK's participation in the consortium.

"One of the challenges we have with this type of agreement is how the different funding agencies from other countries contribute resources. Whoever puts up the money wants it to be spent, and the expertise developed, locally. The idea is that Brazil is not just contributing funds, but that the detectors are being built in the country and installed in the DUNE through the use of Brazilian know-how. This is usually hard to do, but we're going to manage to do it in this case," said the researcher.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.