Insight into tumor-suppressive and tumor-promoting effects of cellular senescence

February 18, 2019

PHILADELPHIA -- (Feb. 18, 2019) -- Researchers at The Wistar Institute have described a novel role of nicotinamide adenine dinucleotide (NAD+) metabolism in the ability of senescent cells to release tumor-promoting molecules. This study, published online in Nature Cell Biology, also cautions that NAD+-augmenting supplements, currently in development for their anti-aging effects as nutroceuticals, should be administered with precision given their potential pro-tumorigenic side effects.

Cellular senescence is a process in which cells irreversibly stop dividing and represents a potent tumor suppressive mechanism. At the same time, senescent cells also produce a variety of inflammatory soluble molecules that can promote tumor growth, known by the name of senescence-associated secretory phenotype (SASP).

The laboratory of Rugang Zhang, Ph.D., deputy director of The Wistar Institute Cancer Center, professor and co-program leader of the Gene Expression and Regulation Program, investigated the role of a family of proteins called HMGAs in cellular senescence and the SASP.

HMGAs are DNA-binding proteins that regulate gene expression. They are frequently overexpressed and associated with poor prognosis in many cancer types, yet they are known to promote senescence. This new research aims to clarify these mechanisms to unveil the dual role of the HMGA family of proteins in cancer.

Zhang and colleagues discovered that in cells undergoing senescence HMGAs increase the levels of NAMPT, a key enzyme in the production of nicotinamide adenine dinucleotide (NAD+), a cellular factor critical for metabolism and enzyme function. Importantly, increased NAD+ levels enhanced the SASP.

"Our data show that NAD+ levels influence the secretory activity of senescent cells in a way that may promote tumor progression," said Zhang. "It is well documented that cellular NAD+ concentrations decrease during aging and the use of NAD+ supplementation is being studied as a new preventive opportunity for aging and age-associated disorders. Our results may have far-reaching implications on this field of investigation."

In fact, by manipulating the expression of HMGA1 and NAMPT, the researchers observed that increased NAD+ metabolism promotes cancer cell proliferation and progression in vivo in mouse models of pancreatic and ovarian cancers.

These data point to a model whereby increased NAD+ metabolism resulting from higher HMGA1 and NAMPT expression promotes a higher SASP and enhances the inflammatory environment around the tumor, which in turn has a stimulatory effect on cancer growth.

"We found that HMGA1 provides a link between the two opposite sides of the coin in the process of senescence -- growth arrest and the tumor promoting, proinflammatory secretory phenotype," said Zhang.

"Our data raise the possibility that targeting NAMPT may be an effective approach to suppress a proinflammatory, tumor promoting microenvironment in tumors that overexpress HMGA1 when treated with senescence-triggering cancer therapeutics such as chemotherapy and radiotherapy," said Timothy Nacarelli, Ph.D., first author of the study and a postdoctoral researcher in the Zhang Lab. "NAMPT inhibitors are currently in clinical trials and thus readily available for these new applications."
Co-authors: Takeshi Fukumoto, Joseph Zundell, Nail Fatkhutdinov, Shuai Wu, Katherine M. Aird, Osamu Iwasaki, Andrew V. Kossenkov, Ken-ichi Noma, Zachary Schug, Hsin-Yao Tang, and David W. Speicher from Wistar. Lena Lau and Gregory David from New York University School of Medicine; David Schultz and Joseph A. Baur from University of Pennsylvania.

Work supported by: National Institutes of Health (NIH) grants R01CA160331, R01CA163377, R01CA202919, P01AG031862, P50CA228991, R01CA148639, R21CA155736, F31CA206387, R00CA194309, R01DK098656, R01CA131582, R50CA211199, R50CA221838, and T32CA009191; U.S. Department of Defense grants OC140632P1 and OC150446. Additional support was provided by The Honorable Tina Brozman Foundation for Ovarian Cancer Research and Ovarian Cancer Research Alliance (Collaborative Research Development Grant and Ann and Sol Schreiber Mentored Investigator Award). Core support for The Wistar Institute was provided by the Cancer Center Support Grant P30CA010815.

Publication information: NAD+ metabolism governs the proinflammatory senescence-associated secretome, Nature Cell Biology (2019). Advance online publication.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer, immunology, infectious disease research, and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible.

The Wistar Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to