Nav: Home

Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted spectral analysis

February 18, 2020

Because pulse trains achieve excellent performance with a simple laser setup, passively mode-locked fiber lasers (MLFLs) based on nonlinear polarization evolution (NPE) have numerous applications. However, NPE-based MLFLs are difficult to operate in the desired pulsation regime via manual polarization tuning and are prone to detaching from the desired regime due to polarization drift from environmental disturbances. To address these challenges, automatic or intelligent mode-locking techniques using adaptive algorithms and electric polarization controllers (EPCs) have emerged in recent years. Several automatic mode-locking lasers use temporal information to help identify the mode-locking regimes. Combined with automatic optimization algorithms, such lasers can successfully reach the mode-locking regimes, but their pulse width and spectral shape are unpredictable. Thus, automatic mode-locking techniques based on a temporal discrimination alone cannot achieve mode-locking with the possible shortest pulse width and desired spectral distribution. Even though optical spectral information can be utilized in automatic mode-locking using an optical spectrum analyser (OSA), such bulky and slow equipment only obtains integrated spectral information and therefore cannot be used for real-time mode-locking.

In a new paper published in Light: Science & Application, scientists from the State Key Lab of Advanced Communication Systems and Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai Jiao Tong University, Shanghai, China, for the first time, proposed using time stretch dispersive Fourier transformation (TS-DFT)-based fast spectral analysis as the discrimination criterion to achieve rich mode-locking regimes. By simply inserting a dispersion medium into the real-time feedback loop of an automatic mode-locking laser and combining this method with an intelligent polarization search using a genetic algorithm (GA), they can manipulate the spectral width and shape of the mode-locked femtosecond pulses in real time. The technique is termed as the time-stretch-assisted real-time pulse controller (TSRPC). With the TSRPC, the spectral width of the mode-locked femtosecond pulses can be tuned from 10 nm to 40 nm with a resolution of ~1.47 nm, and the spectral shape can be programmed to be hyperbolic secant or triangular. Benefitting from the TS-DFT and the real-time GA optimizer, the TSRPC overcomes the considerable slowness, cost, and bulkiness of traditional OSAs used in previous automatic mode-locking lasers. The TSRPC can be made even more portable by replacing the DCF with a small optical grating, and its spectral programming resolution can be improved by using an ADC with a higher sampling rate or a medium with large dispersion. Furthermore, with real-time control of the spectral width and shape of the mode-locking pulses, they revealed the complex and repeatable transition dynamics from the narrow-spectrum mode-locking regime to the wide-spectrum mode-locking regime, including five middle phases: a relaxation oscillation, single soliton state, multi-soliton state, triangle-spectrum transition, and chaotic transition, providing deep insight into the ultrashort pulse formation that cannot be observed with traditional mode-locked lasers.

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Related Lasers Articles:

Towards lasers powerful enough to investigate a new kind of physics
In a paper that made the cover of the journal Applied Physics Letters, an international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers.
A breakthrough in developing multi-watt terahertz lasers
Researchers from Lehigh University are reporting another terahertz technology breakthrough: they have developed a new phase-locking technique for plasmonic lasers and, through its use, achieved a record-high power output for terahertz lasers.
Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.
Fusion by strong lasers
Nuclear physics usually involves high energies, as illustrated by experiments to master controlled nuclear fusion.
Using lasers to study explosions
An explosion is a complex event involving quickly changing temperatures, pressures and chemical concentrations.
Powerful lasers for fragile works of art
Protecting artworks from the effects of aging requires an understanding of the way materials alter over time.
Colliding lasers double the energy of proton beams
Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators.
Physicists propose perfect material for lasers
Weyl semimetals are a recently discovered class of materials, in which charge carriers behave the way electrons and positrons do in particle accelerators.
Lasers make magnets behave like fluids
Researchers have discovered how magnets recover after being blasted by a laser.
Spin lasers facilitate rapid data transfer
Engineers have developed a novel concept for rapid data transfer via optical fibre cables.
More Lasers News and Lasers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at