Nav: Home

Scientists: Estonia has the most energy efficient new nearly zero energy buildings

February 18, 2020

A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe. The analyses of the NZEB energy performance requirements and reference apartment buildings in four countries (Estonia, Norway, Finland and Sweden) showed that the nearly zero energy buildings constructed in Estonia are most energy-efficient, i.e. their energy consumption is the lowest.

Head of the TalTech Nearly Zero Energy Buildings Research Group, Professor Jarek Kurnitski says, "The reason for our success story in building energy efficiency is, besides the 15-year sterling work carried out by our researchers and engineers, also the fact that Estonia as a fast-evolving country was one of the few in Europe to establish minimum energy performance requirements in 2019 with the ambition following the cost-optimal calculations results. This approach was initially planned also by our neighbouring country Finland, who, however, bowed to market pressure and opted for a slower development path. This meant slightly lower construction costs, but significantly higher operation costs in the long run."

In Europe, climate zones are divided into four. Estonia, together with the other Nordic countries, is located in the fourth, i.e. the coldest zone. When benchmarking NZEB requirements against European Commission's NZEB recommendations, the differences in national methodologies that affect the results of the calculations must be taken into account. For example, Finland consumes nearly twice as much domestic hot water per person as Central Europe.

The international research group draw its conclusions by taking into account the NZEB requirements in force in the European Union, which are expressed as national energy performance indicators.

"Primary energy indicator" means total weighted energy consumption per heated square metre of a building. It is calculated not based on the total cost of energy consumption, but by using conversion factors, which take into account the primary energy content of energy delivered into the building. The conversion factors as well as many other input data differ from a country to another. National nearly zero energy performance indicators must be calculated based on cost-optimal levels, i.e. by determining the present value of a 30-year life cycle: the costs are composed of the construction costs, 30-years maintenance and operation costs with interest and increase of energy prices, which is why energy costs play an important role.

"Finding the most cost-effective energy efficient solutions is an economic-technical optimization task the building scientists need to tackle. However, we should not split hairs upon improving energy efficiency, because in order to achieve cost-efficiency, construction costs must be kept under control," says Professor Kurnitski, who is also leading one of Estonian centres of excellence - ZEBE centre of excellence for zero energy and resource efficient smart buildings and districts.

Why have many countries not been as successful as Estonia in achieving the energy efficiency goals?

In Finland, for example, the 10-year economic recession created an unfavourable environment, which made the decision-makes cautious and, instead of targeting low life- cycle costs, a course was taken to achieve as low construction cost as possible. This solution is not sustainable in the longer run. In Sweden, the process of preparing the requirements took too long, which explains a relatively low ambition of the requirements set out within the prescribed deadline.

"Strict energy efficiency requirements constitute a kind of consumer protection for a house or apartment buyer. Energy efficiency would never improve only by considering construction market preferences - it is profitable for the developer to build at the lowest possible cost, because the buyers are looking for a home and usually do not take later high operation costs into account at the time of purchase," Jarek Kurnitski says.

In Estonia, the first energy efficiency requirements based on primary energy use were established in 2008. In 2013, the requirements became stricter and from 2019-2020 NZEB requirements were established (from 2019 valid for public buildings and from 2020 for residential buildings).

Professor Kurnitski says, "Estonia has trusted its scientists, responded quickly and flexibly to the changes and achieved rapid improvement in energy efficiency along with economic growth. In 2013, we reached the same level as Sweden, Finland and Norway, but now we are a step ahead of them. Somewhat surprisingly, Estonia had the courage to establish ambitious NZEB requirements by regulations and make the construction sector stick to the requirements."

Energy efficiency requirements shall be reviewed every five years. In 2013, the required energy class in an energy performance certificate was C; class A is laid down now by NZEB requirements. More classes may be introduced in the future, for example, class A+++ is used already as the highest class for household appliances. Energy costs have decreased significantly in modern residential buildings. For example, compared to an apartment building built in the 1970 s, the energy consumption in a modern zero energy building is more than twice as low and the heating costs are even more than four times lower.
The international research group included researchers from TalTech, Aalto University, SINTEF in Norway and Växjö in Sweden. An article on the work of the research group "NZEB requirements in Nordic countries" was published in REHVA Journal in December 2019.

Additional information: Head of the Nearly Zero Energy Buildings Research Group at TalTech Department of Civil Engineering and Architecture, Professor Jarek Kurnitski,

Kersti Vähi, TalTech Research Administration Office

Estonian Research Council

Related Energy Efficiency Articles:

Boosting energy efficiency of 2D material electronics using topological semimetal
SUTD researchers discover a new way to boost the energy efficiency of 2D semiconductor electronics by synergizing 2D materials and topological semimetals.
New 5G switch provides 50 times more energy efficiency than currently exists
As 5G hits the market, new US Army-funded research has developed a radio-frequency switch that is more than 50 times more energy efficient than what is used today.
Development of electrode material improving the efficiency of salinity gradient energy
Dr. Jeong Nam-Jo of Korea Institute of Energy Research(KIER) Marine Energy Convergence and Integration Research Team developed synthesis technologies of electrode material that can directly synthesize molybdenum disulfide thin films on the electrode current collector surface to contribute improving the efficiency and economic feasibility of salt gradient power generation using reverse electrodialysis.
Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.
Towards a sustainable future -- Novel technology to measure energy conversion efficiency
Conversion of energy is a constant process but measuring the efficiency of this conversion is not an easy task.
How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Microgrids can help maximize efficiency of renewable energy consumption
A group of Italian researchers has developed a method that enables more efficient use of energy by smart homes that are connected to a microgrid -- a web of individualized units that are connected to one another and one common energy source.
Connection between home energy efficiency and respiratory health in low-income homes
A new study finds people living in drafty homes in low-income, urban communities are at a higher risk of respiratory health issues.
Merging antenna and electronics boosts energy and spectrum efficiency
By integrating the design of antenna and electronics, researchers have boosted the energy and spectrum efficiency for a new class of millimeter wave transmitters, allowing improved modulation and reduced generation of waste heat.
Shedding light on the energy-efficiency of photosynthesis
A new study led by researchers at the University of California, Davis, suggests that photorespiration wastes little energy and instead enhances nitrate assimilation, the process that converts nitrate absorbed from the soil into protein.
More Energy Efficiency News and Energy Efficiency Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at