Nav: Home

Mayo researchers create, test AI to improve EKG testing for hypertrophic cardiomyopathy

February 18, 2020

ROCHESTER, Minn. - An approach based on artificial intelligence (AI) may allow EKGs to be used to screen for hypertrophic cardiomyopathy in the future. With hypertrophic cardiomyopathy, the heart walls become thick and may interfere with the heart's ability to function properly. The disease also predisposes some patients to potentially fatal abnormal rhythms. Current EKG technology has limited diagnostic yield for this disease.

New Mayo Clinic research suggests that a convolutional neural network AI can be trained to detect unseen characteristics of hypertrophic cardiomyopathy. The standard 12-lead EKG is a readily available, low-cost test that can be performed in many settings, including those with limited resources.

Hypertrophic cardiomyopathy may be underdiagnosed because it often does not cause symptoms. Patients are often unaware they have it until they experience complications, but early identification can be important. Hypertrophic cardiomyopathy is one of the leading causes of sudden death in adolescents and young adults participating in sports.

Peter Noseworthy, M.D., a Mayo Clinic cardiologist, suggests that AI might offer an effective and readily-available method for earlier diagnosis of hypertrophic cardiomyopathy through an EKG. Dr. Noseworthy is senior author on a newly published study in the Journal of the American College of Cardiology: "Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram."

Researchers trained and validated a convolutional neural network using digital 12-lead EKG from 2,448 patients known to have hypertrophic cardiomyopathy and 51,153 who did not, matching the control subjects for age and sex. Next they tested the AI's ability to detect the disease on a different group of 612 subjects with hypertrophic cardiomyopathy and 12,788 control subjects.

For diagnostic tests such as this neural network, the diagnostic performance is measured mathematically through the area under the receiver operating characteristic curve, on a scale where 0.5 is poor (flip of a coin) and 1.0 is excellent (perfect test). The measurement relates to the test's ability to correctly identify patients who have the disease (sensitivity), and correctly identify patients who do not have the disease (specificity).

For comparison, a typical positive Pap smear test would have an area under the curve of 0.7 and a mammogram would be 0.85. The study found the AI's ability to determine patients with hypertrophic cardiomyopathy from those without it had an area under the curve of 0.96 ? a powerful predictor.

"The good performance in patients with a normal EKG is fascinating," says Dr. Noseworthy. "It's interesting to see that even a normal EKG can look abnormal to a convolutional neural network. This supports the concept that these networks find patterns that are hiding in plain sight."

The study also tested the AI on subgroups. The area under the curve for predicting hypertrophic cardiomyopathy in a group of patients diagnosed with left ventricular hypertrophy, a disease caused by high blood pressure that also is characterized by heart wall thickening, was 0.95. The area under the curve in the subgroup with only normal EKGs was also 0.95. The area under the curve for the subgroup of patients diagnosed with aortic stenosis (narrowing of the valve) was 0.94. The test performed similarly well in a subset of patients who had been genetically tested and confirmed to have pathogenic mutations for the disease.

"The subgroups are important for understanding how to apply the test. It's good to see that the AI performs well when the EKG is normal as well as when it is abnormal due to left ventricular hypertrophy," says Konstantinos Siontis, M.D., a resident cardiologist at Mayo Clinic and co-first author of the study. "Perhaps even more important is the fact that the algorithm performed best in the younger subset of patients in our study (under 40 years old), which highlights its potential value in screening younger adults."

More research remains to be done, such as testing the AI in other adult populations, children and adolescents to find out where it works well and where it fails.

"This is a promising proof of concept, but I would caution that, despite its powerful performance, any screening test for a relatively uncommon condition is destined to have high false positive rates and low positive predictive value in a general population. We still need to better understand which particular populations will benefit from this test as a screening tool," says Dr. Siontis.

"We also need to learn more about what specific characteristics of hypertrophic cardiomyopathy this network is detecting. We hope to learn how to apply this technology to screening and managing patients in families affected by this disease," adds Dr. Noseworthy.
-end-
Dr. Siontis and Wei-Yin Ko of Mayo Clinic are co-first authors on the study.

About Mayo Clinic

Mayo Clinic is a nonprofit organization committed to innovation in clinical practice, education and research, and providing compassion, expertise and answers to everyone who needs healing. Visit the Mayo Clinic News Network for additional Mayo Clinic news and An Inside Look at Mayo Clinic for more information about Mayo.

Media contact:

Terri Malloy, Mayo Clinic Public Affairs, 507-284-5005, newsbureau@mayo.edu

Mayo Clinic

Related Artificial Intelligence Articles:

A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
Reducing the carbon footprint of artificial intelligence
MIT system cuts the energy required for training and running neural networks.
Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.