Nav: Home

Targeting turncoat immune cells to treat cancer

February 18, 2020

FEBRUARY 18, 2020, NEW YORK -- A Ludwig Cancer Research study has identified a mechanism by which regulatory T cells, which suppress immune responses, adapt their metabolism to thrive in the harsh microenvironment of the tumor. This mechanism, the study finds, is exclusively engaged by regulatory T cells (Tregs) that reside in tumors and could be disrupted to selectively target such Tregs and boost the effects of cancer immunotherapy.

"It has long been known that the Tregs found in tumors protect cancer cells from immune attack, so countering Tregs would be an important strategy for cancer immunotherapy," says Ping-Chih Ho, associate member of the Lausanne Branch of the Ludwig Institute for Cancer Research, who led the study. "But a major hurdle to such interventions is that the systemic suppression of Treg activity can cause severe autoimmune reactions. We have discovered a potential approach to overcoming that problem, one that selectively targets Tregs in tumors and could therefore prevent such adverse effects."

Tregs play a critical role in healthy tissues, where they prevent autoimmune disease and aid wound-healing. But, when recruited into tumors, Tregs also thwart anti-cancer immune responses--and immunotherapy. The current study, published in Nature Immunology, identifies a protein that drives the metabolic adaptations of intratumoral Tregs. The researchers show in a mouse model of melanoma that targeting that protein with an antibody significantly boosts the efficacy of immunotherapy without causing autoimmune side effects.

The cores of tumors are often acidic and starved of oxygen and vital nutrients, which forces resident cells to adapt their metabolism to survive. Ho and graduate student Haiping Wang suspected those adaptations might also reveal vulnerabilities unique to intratumoral Tregs. To find those vulnerabilities, they analyzed a dataset of Treg gene expression in breast tumors and blood compiled a few years ago by the laboratory of Ludwig MSK Director Alexander Rudensky.

They found that those and other intratumoral Tregs expressed high levels of genes involved in lipid uptake and metabolism--particularly CD36, a receptor involved in lipid import. An analysis of Tregs from human melanoma patients conducted by Ludwig Memorial Sloan Kettering (MSK) researchers Taha Merghoub and Jedd Wolchok yielded similar results.

To explore the role of CD36 in intratumoral Tregs, the researchers generated mice that lacked the CD36 gene only in their Treg cells and engrafted them with melanoma. "We found that the tumor burden was reduced in CD36-deficient mice," says Wang, "and the number and functionality of Tregs declined only within tumors, not in the other, healthy tissues of the mice."

CD36 deficiency induced in intratumoral Tregs a form of cell suicide known as apoptosis that was driven by a decline in the health and number of mitochondria--the power generators of cells. Further study revealed that CD36 fuels the activity of PPARβ, a protein essential to the genesis and function of mitochondria.

Treating mice bearing melanoma tumors with an antibody to CD36 resulted in a decline of intratumoral Tregs that was not seen in genetically identical control mice. When this antibody was combined with an immunotherapy known as PD-1 blockade, which stimulates a T cell attack on cancer cells, tumor growth slowed significantly, prolonging the survival of the mice. "By targeting CD36 with an antibody, we don't just create trouble for intratumoral Tregs, we also create trouble for the tumor's ability to maintain an immunosuppressive microenvironment and hamper immunotherapy," says Ho.

Ho's lab is now working to translate these findings into a potential cancer therapy while exploring how CD36-targeting might be combined with other interventions to more extensively disable Tregs selectively within tumors. They are also exploring which other types of solid tumors harbor Tregs that are dependent on CD36 for survival.
This study was supported by Ludwig Cancer Research, the Swiss Cancer Foundation, the Swiss Institute for Experimental Cancer Research, the European Research Council, the Cancer Research Institute, the Society for Immunotherapy of Cancer, the US National Institutes of Health, the Research Foundation--Flanders, the Swiss Cancer Research Foundation, Swim Across America, the Parker Institute for Cancer Immunotherapy and the Breast Cancer Research Foundation.

In addition to his Ludwig post, Ping-Chih Ho is an associate professor at the University of Lausanne.

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists that has pioneered cancer research and landmark discovery for 48 years. Ludwig combines basic science with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested $2.7 billion in life-changing science through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. To learn more, visit

For further information please contact Rachel Reinhardt, or +1-212-450-1582.

Ludwig Institute for Cancer Research

Related Cancer Cells Articles:

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at