An efficient method for separating O-18 from O-16, essential for use in cancer treatment

February 18, 2021

Positron Emission Tomography (PET) plays a major role in the early detection of various types of cancer. A research group led by Specially Appointed Professor Katsumi Kaneko of the Research Initiative for Supra-Materials (RISM), Shinshu University have discovered a method to separate oxygen-18 from oxygen-16, an essential isotope for PET diagnosis, at high speed and high efficiency. The results of this research were recently published online in the journal Nature Communications.

The novel method for the rapid and efficient separation of O-18 from O2-16, which is abundant in the atmosphere, was carried out with nanoporous carbon, which is made of pores smaller than 1 nanometer. When a mixture of O2-16 and O2-18 is introduced into the nanoporous carbon, the O2-18 is preferentially adsorbed and is efficiently separated from O2-16. The experimental separation of O2-18 from O2-16 was also conducted using the low-temperature waste heat from a natural gas storage facility.

O-18 plays a major role in the early detection of cancer. Taking advantage of the property of cancer cells which take up much more glucose than normal cells, doctors inject a drug called 18F-FDG (fluorodeoxyglucose), which is an index of glucose metabolism and uses a PET machine to clarify which part of the body has cancer. 18F-FDG is a drug in which fluorine-18 (18F), which emits positive electricity, is attached to glucose. 18F-FDG is produced by a nuclear reaction in which O-18 is introduced before the protons are injected. Therefore, O-18 is an important substance indispensable for PET diagnosis but was difficult to procure because only 0.2% of naturally occurring oxygen is O-18. In order to separate O-18 from the majority of O-16 found in the atmosphere, it was necessary to distill O-18 from O-16, even though they have very similar boiling points. This distillation required precise technology and took more than 6 months to complete.

The novel method using nanoporous carbon to distill O-18 can be used not only for PET diagnosis but for research on dementia, and this novel method can be applied to the separation of carbon and nitrogen isotopes, and other molecules useful for isotopic analysis methods and therapeutic cancer drugs. The group expects more demand for this method and substance in the future.
-end-
Two co-authors of the international collaborative study sent comments for the press release:

Professor Yury Gogotsi Drexel University, USA


It is exciting to see that my guest professorship at Shinshu University allowed me to participate in this very important multi-institutional project that led to development of a new process for separation of oxygen isotopes using carbon nanomaterials developed in my lab at Drexel University.

Professor Karl Johnson of University of Pittsburgh, USA

It was an exciting and challenging experience to work on this research project with Professor Kaneko, Professor Gogotsi, their teams, and the others. The experimental work was amazing and really pushed the limits of our theoretical capabilities to discover how quantum effects could be so important for relatively heavy isotopes.

Please read the paper for more information: Nature Communications (2021) https://doi.org/10.1038/s41467-020-20744-6

Acknowledgements: K.K. acknowledges project Japan Science Technology Agency (JST) CREST "Creation of Innovative Functional Materials with Advanced Properties by Hyper-nanospace Design" and partial support by the Grant-in-Aid for Scientific Research (B) (17H03039) and the OPERA JST project (JPMJOP1722). SKU was supported by the JST-CREST and OPERA projects. H.T., R.F., and F.V.-B. are supported by TAKAGI Co., Ltd. Funding for A.B. and J.K.J. was provided by the National Science Foundation under Award No. CBET1703266. Simulations were performed using the computational resources provided by the Center for Research Computing at the University of Pittsburgh and Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562, under allocation No. TG- DMR110091 and the Pawsey Supercomputing Centre, with funding from the Govern- ment of Australia and the Government of Western Australia. C.D.T. and I.S.M. are supported by the Australian Research Council under grant FT140100191. CDC synthesis was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences.

Shinshu University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.