The distribution of vertebrate animals redefines temperate and cold climate regions

February 18, 2021

The distribution of vegetation is routinely used to classify climate regions worldwide, yet whether these regions are relevant to other organisms is unknown. Umeå researchers have established climate regions based on vertebrate species' distributions in a new study published in eLife. They found that while high-energy climate regions are similar across vertebrate and plant groups, there are large differences in temperate and cold climates.

Climate determines how life organises across the world. Understanding which climatic conditions drive important changes in ecosystems is crucial to understanding and predicting how life functions and evolves.

Human well-being critically depends on the vertebrate diversity, and yet we don't know enough about the climates that promote the organisation of these species. We know for instance that dry environments promote the generation of deserts, and humid and hot environments allow evergreen forests to thrive. But what conditions drive the distribution of vertebrates like mammals, frogs, birds and more?

"To fill this gap, we studied the climates driving the organisation of vertebrates on Earth. We developed a network-based approach that connects species to their preferred climatic conditions. Then, we searched for climatic conditions preferred by similar vertebrate species," explains main author Joaquín Calatayud former post doc at Integrated Science Lab, Umeå University, and today working at King Juan Carlos University in Spain.

With this approach, the authors presented the climate regions that define the distribution of vertebrates. Climates with high-energy, such as deserts, tropical savannas, and steppes, were found to be similar across different groups of vertebrates and plants. This was not the case for temperate and cold climates. Regions characterized by those climates differed across all groups. For instance, warm-blooded birds and mammals define regions of polar climates that are not observed in the case of cold-blooded amphibians and reptiles. This suggests that inhabiting these climates requires possessing specific climatic adaptations that have not appeared in all groups.

"Our results indicate that specific climate classifications are required to study the ecology, evolution, and conservation of specific groups of species," says Joaquín Calatayud.

This study can build the basis for a better understanding of climate-driven ecological and evolutionary processes, leading to better conservation strategies, the authors say.

"Do ecosystem functions or evolutionary processes vary among climate regions? Do climatic regions hold a similar conservation status? These are some of the questions that our results could help to answer."
-end-
Original article: Joaquín Calatayud, Magnus Neuman, Alexis Rojas, Anton Eriksson, Martin Rosvall: Regularities in species' niches reveal the world's climate regions. eLife 2021 (10:e58397). DOI: 10.7554/eLife.58397

Umea University

Related Conservation Articles from Brightsurf:

New guide on using drones for conservation
Drones are a powerful tool for conservation - but they should only be used after careful consideration and planning, according to a new report.

Elephant genetics guide conservation
A large-scale study of African elephant genetics in Tanzania reveals the history of elephant populations, how they interact, and what areas may be critical to conserve in order to preserve genetic diversity of the species.

Measuring the true cost of conservation
BU Professor created the first high-resolution map of land value in the United states.

Environmental groups moving beyond conservation
Although non-governmental organizations (NGOs) have become powerful voices in world environmental politics, little is known of the global picture of this sector.

Hunting for the next generation of conservation stewards
Wildlife ecology students become the professionals responsible for managing the biodiversity of natural systems for species conservation.

Conservation research on lynx
Scientists at the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) and the Leibniz Institute for Molecular Pharmacology (Leibniz-FMP) discovered that selected anti-oxidative enzymes, especially the enzyme superoxide dismutase (SOD2), may play an important role to maintain the unusual longevity of the corpus luteum in lynxes.

New 'umbrella' species would massively improve conservation
The protection of Australia's threatened species could be improved by a factor of seven, if more efficient 'umbrella' species were prioritised for protection, according to University of Queensland research.

Trashed farmland could be a conservation treasure
Low-productivity agricultural land could be transformed into millions of hectares of conservation reserve across the world, according to University of Queensland-led research.

Bats in attics might be necessary for conservation
Researchers investigate and describe the conservation importance of buildings relative to natural, alternative roosts for little brown bats in Yellowstone National Park.

Applying biodiversity conservation research in practice
One million species are threatened with extinction, many of them already in the coming decades.

Read More: Conservation News and Conservation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.