The mass of Cygnus X-1's black hole challenges stellar evolution models

February 18, 2021

Weighing in at roughly 21 solar masses, the black hole in the X-ray binary system Cygnus X-1 is so massive that it challenges current stellar evolution models, a new study reveals. Ultimately, the mass of a black hole is determined by its parent star's properties and is generally constrained by the mass lost to stellar winds throughout its lifetime. If a black hole interacts with a binary companion star, the system emits X-rays and can sometimes form radio jets, which make the systems visible to electromagnetic observations as an X-ray binary. Measurements from known x-ray binaries have shown that black holes in these systems all have masses below 20 solar masses (M?), with the largest being 15-17 M?. However, gravitational wave detections of black hole merger events have found more massive black holes, reaching upwards of 50 M?, revealing a discrepancy that challenges current theories on black hole formation from massive stars. Here, James Miller-Jones and colleagues present new observations of Cygnus X-1 - a well-studied stellar-mass black hole located in our Milky Way Galaxy - using the Very Long Baseline Array (VLBA). Between May 29 and June 3, 2016, they performed six observations (one per day) of Cygnus X-1 with the VLBA. Using the new data and archival observations, Miller-Jones et al. refined the distance to the X-ray binary and found it to be farther away than previously estimated, thus raising the inferred mass of the system's black hole to 21 M?. The new measurements establish Cygnus X-1 as the most massive electromagnetically detected stellar-mass black hole currently known. According to the authors, for a black hole this massive to exist in the Milky Way, the mass lost through stellar winds during the progenitor star's evolution must have been lower than what current models predict.
-end-


American Association for the Advancement of Science

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.