Fuel for earliest life forms: Organic molecules found in 3.5 billion-year-old rocks

February 18, 2021

A research team including the geobiologist Dr. Helge Missbach from the University of Cologne has detected organic molecules and gases trapped in 3.5 billion-year-old rocks. A widely accepted hypothesis says that the earliest life forms used small organic molecules as building materials and energy sources. However, the existence of such components in early habitats on Earth was as yet unproven. The current study, published in the journal 'Nature Communications', now shows that solutions from archaic hydrothermal vents contained essential components that formed a basis for the earliest life on our planet.

Specifically, the scientists examined about 3.5 billion-year-old barites from the Dresser Formation in Western Australia. The barite thus dates from a time when early life developed on Earth. 'In the field, the barites are directly associated with fossilized microbial mats, and they smell like rotten eggs when freshly scratched. Thus, we suspected that they contained organic material that might have served as nutrients for early microbial life,' said Dr. Helge Missbach of the Institute of Geology and Mineralogy and lead author of the study.

In the fluid inclusions, the team identified organic compounds such as acetic acid and methanethiol, in addition to gases such as carbon dioxide and hydrogen sulfide. These compounds may have been important substrates for metabolic processes of early microbial life. Furthermore, they are discussed as putative key agents in the origin of life on Earth. 'The immediate connection between primordial molecules emerging from the subsurface and the microbial organisms - 3.5 billion years ago - somehow surprised us. This finding contributes decisively to our understanding of the still unclear earliest evolutionary history of life on Earth,' Missbach concluded.
-end-


University of Cologne

Related Hydrogen Sulfide Articles from Brightsurf:

USTC develops single crystalline quaternary sulfide nanobelts
USTC has designed a simple colloidal method to synthesize single crystalline wurtzite CZIS nanobelts, as well as the single crystalline wurtzite CZGS nanobelts assisted with oleylamine and 1-dodecanethiol.

Hydrogen sulfide helps maintain your drive to breathe
Researchers from the University of Tsukuba have found that the production of hydrogen sulfide gas is necessary to breathe normally.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Cyclohexyl phenyl sulfide cleavage studied for degradation of sulfur-containing heavy oil
So far, the KFU team has proven copper compounds are the most effective in producing catalysts for heavy oil extraction.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Scientists identify missing source of atmospheric carbonyl sulfide
Researchers at Tokyo Institute of Technology (Tokyo Tech) report that anthropogenic sources of carbonyl sulfide (OCS), not just oceanic sources, account for much of the missing source of OCS in the atmosphere.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen sulfide heightens disease in tuberculosis, suggesting a new therapeutic target
A new culprit -- hydrogen sulfide -- has been found for the deadly infectious disease tuberculosis.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Read More: Hydrogen Sulfide News and Hydrogen Sulfide Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.