EMBL researchers discover key molecular 'switch' in eye development of medaka fish

February 19, 2004

Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg have discovered a molecular "switch" that guides the development of the eye in a fish called medaka. The interaction of two proteins determines whether cells divide or specialize at a key moment as the eye forms. Researchers are keenly interested in such switches because the decision to replicate or differentiate is crucial to many processes, from the proper growth of embryos to the development of cancer. The story appears in this week's edition of Nature (February 19, 2004).

"The discovery of this novel protein-protein connection is a major step forward in understanding a basic biological process such as the tight control and delicate balance between cell proliferation and cell differentiation," notes PhD student Filippo Del Bene.

At any one time, the body's cells choose between one of two paths: either divide to produce exact copies of themselves (called "proliferation") or to take on very specialized shapes and functions such as liver, brain or retinal cells (called "differentiation"). Building a fish - or a human - involves perfect timing in switching back and forth between the two processes. If cells specialize too early, organs won't grow. If tissue continues to divide after it has specialized, tumors may form.

Group Leader Jochen Wittbrodt and PhD student Filippo Del Bene were studying a protein called SIX3, produced by cells that will form the head in medaka embryos. SIX3 helps cells develop into the retina and part of the brain. "This protein is so powerful that if a cell produces it at the wrong stage of development, a retina will form - even if it's in the wrong place in the body," Wittbrodt says.

Del Bene discovered that SIX3 can clamp onto another protein called GEMININ, known to researchers for its role in cell division. "If GEMININ is around, cells don't divide," Del Bene says. "It prevents them from copying their DNA, necessary for cell division."

When GEMININ is active at the wrong time, it disrupts cell division, making retinal cells specialize too early. Del Bene and Wittbrodt showed that when SIX3 locks onto it, GEMININ is unable to stop division, and the tissue grows to its proper size. When the cells have reached their normal size, GEMININ needs to unlock itself from SIX3 to become active again, so that tissues don't become too large. Building the eye requires subtly shifting between amounts of these two proteins at the right times.

"This process of switching back and forth is necessary in the tissues of all organisms," Wittbrodt says. "It's fascinating to find that just two molecules play a fundamental role in the medaka eye. There may be similar switches in other tissues and other organisms. This gives us a good place to start looking."
-end-


European Molecular Biology Laboratory

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.