Nav: Home

The magic of microbes: ONR engineers innovative research in synthetic biology

February 19, 2016

An exciting new scientific frontier--synthetic biology--took center stage as a celebrated scientist from the Massachusetts Institute of Technology (MIT) recently spoke at the headquarters of the Office of Naval Research (ONR).

As part of a Distinguished Lecture Series celebrating ONR's 70th anniversary, world-class scientists, researchers and experts from diverse fields will be speaking at ONR in 2016. Dr. Christopher Voigt, an MIT professor of biological engineering, inaugurated the lecture series with a look at the revolutionary potential of synthetic biology.

Synthetic biology involves creating or re-engineering microbes or other organisms to perform specific tasks like monitoring chemical threats, creating biofuels and even improving the health and physical performance of warfighters. The field was identified by Chief of Naval Research Rear Adm. Mat Winter as a top priority because of its far-ranging and broad-based impact on warfighter performance and fleet capabilities.

"ONR first realized the promise of this field over a decade ago to provide future naval forces with new, innovative approaches for threat detection, environmental sensing and enhancement of warfighter health and performance," said Winter. "This platform could define the 21st century--impacting health, the environment and military capabilities."

An ONR-supported performer since 2006, Voigt used concepts and techniques from electrical engineering to manipulate and program a cell's circuitry. With these tools, scientists can engineer bacteria like Escherichia coli to carry out functions such as detecting specific light wavelengths or toxic chemicals.

"Dr. Voigt was among the first to say electrical engineering principles could be useful in synthetic biology," said Dr. Linda Chrisey, a program officer in ONR's Warfighter Performance Department. "The programming language he helped develop allows you to program a cell's circuitry much like you would a computer or robot."

That partnership paid off for ONR, which has since worked with university researchers like Voigt to unearth ways to use the smallest units of life to help Sailors and Marines execute their mission. Research areas include:
  • Gut microbiology: This area focuses on how gut microbes respond to stressors common to warfighters--changes in diet, fearful situations, sleep loss or disrupted circadian rhythms from living in submarines. Rice University professor Dr. Jeff Tabor was featured in a recent Scientific American article for his ONR-sponsored work in the field.

  • Threat detection: This involves designing highly sensitive microbes (which could be placed on a silicon chip and attached to unmanned vehicles) that could potentially sense the presence of pollutants, toxic chemicals or explosives like trinitrotoluene (TNT). Recent successes include creating a "smart" plant that turns white when it detects TNT.

  • Biofuels: Specially engineered microbes with carbon dioxide-based metabolisms can use electrical currents to produce butanol, an alternative fuel. This same process might be able to make certain types of medicines or foods in remote locations.

"Right now, the research into synthetic biology is very basic and still in its early stages," said Chrisey. "However, the future implications could be huge. Using cells to sense and process information would allow the Navy to reduce the size and weight of its current systems and make them more energy efficient.

"We also hope to use synthetic biology to enhance warfighter performance," she continued, "by reducing susceptibility to stressors such as jet lag, noise and changes in altitude and temperature--by using the microbes that are naturally inside all of us."

Watch Voigt's lecture here.

Office of Naval Research

Related Microbes Articles:

Microbes seen controlling action of host's genes
Duke researchers have shown that microbes can control their animal hosts by manipulating the molecular machinery of their cells, triggering patterns of gene expression that consequently contribute to health and disease.
Three-way dance between herbivores, plants and microbes unveiled
What looks like a caterpillar chewing on a leaf or a beetle consuming fruit is likely a three-way battle that benefits most, if not all of the players involved, according to a Penn State entomologist.
Vitamin B12: Power broker to the microbes
In the microbial world, vitamin B12 is a hot commodity.
Gut microbes and bird's breath from the U at #SICB2017
University of Utah researchers will be among the scientists convening in New Orleans for the 2017 Annual Meeting for the Society for Integrative and Comparative Biology Jan.
Gut microbes contribute to recurrent 'yo-yo' obesity
New research in mice may in the future help dieters keep the weight off.
Digital microbes for munching yourself healthy
A research team at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg has taken an important step in modelling the complexity of the human gut's bacterial communities -- the microbiome -- on the computer.
How gut microbes help chemotherapy drugs
Two bacterial species that inhabit the human gut activate immune cells to boost the effectiveness of a commonly prescribed anticancer drug, researchers report Oct.
Soil microbes flourish with reduced tillage
Microbes improve soil quality by cycling nutrients and breaking plant residues down into soil organic matter.
Microbes help plants survive in severe drought
Plants can better tolerate drought and other stressors with the help of natural microbes, University of Washington research has found.
Mix and match microbes to make probiotics last
Scientists have tried to alter the human gut microbiota to improve health by introducing beneficial probiotic bacteria.

Related Microbes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...