Nav: Home

Unconventional superconductor may be used to create quantum computers of the future

February 19, 2018

With their insensitivity to decoherence what are known as Majorana particles could become stable building blocks of a quantum computer. The problem is that they only occur under very special circumstances. Now researchers at Chalmers University of Technology have succeeded in manufacturing a component that is able to host the sought-after particles.

Researchers throughout the world are struggling to build a quantum computer. One of the great challenges is to overcome the sensitivity of quantum systems to decoherence, collaps of superpositions. One track within quantum computer research is therefore to make use of what are known as Majorana particles, which are also called Majorana fermions. Microsoft is also committed to the development of this type of quantum computer.

Majorana fermions are highly original particles, quite unlike those that make up the materials around us. In highly simplified terms, they can be seen as half electron. In a quantum computer the idea is to encode information in a pair of Majorana fermions which are separated in the material, which should, in principle, make the calculations immune to decoherence.

So where do you find Majorana fermions?

In solid state materials they only appear to occur in what are known as topological superconductors - a new type of superconductor that is so new and special that it is hardly ever found in practice. But a research team at Chalmers University of Technology is now among the first in the world to submit results indicating that they have actually succeeded in manufacturing a topological superconductor.

"Our experimental results are consistent with topological superconductivity," says Floriana Lombardi, Professor at the Quantum Device Physics Laboratory at Chalmers.

To create their unconventional superconductor they started with what is called a topological insulator made of bismuth telluride, Be2Te3. A topological insulator is mainly just an insulator - in other words it does not conduct current - but it conducts current in a very special way on the surface. The researchers have placed a layer of a conventional superconductor on top, in this case aluminium, which conducts current entirely without resistance at really low temperatures.

"The superconducting pair of electrons then leak into the topological insulator which also becomes superconducting," explains Thilo Bauch, Associate Professor in Quantum Device Physics.

However, the initial measurements all indicated that they only had standard superconductivity induced in the Bi2Te3 topological insulator. But when they cooled the component down again later, to routinely repeat some measurements, the situation suddenly changed - the characteristics of the superconducting pairs of electrons varied in different directions.

"And that isn't compatible at all with conventional superconductivity. Suddenly unexpected and exciting things occurred," says Lombardi.

Unlike other research teams, Lombardi's team used platinum to assemble the topological insulator with the aluminium. Repeated cooling cycles gave rise to stresses in the material (see image below), which caused the superconductivity to change its properties.

After an intensive period of analyses the research team was able to establish that they had probably succeeded in creating a topological superconductor.

"For practical applications the material is mainly of interest to those attempting to build a topological quantum computer. We ourselves want to explore the new physics that lies hidden in topological superconductors - this is a new chapter in physics," Lombardi says.
-end-
The results were recently published in the scientific journal Nature Communications: Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator

More about quantum computers and the Majorana particle

A large Quantum computer project in the Wallenberg Quantum Technology Centre is underway at Chalmers University of Technology. It is, however, based on technology other than topological superconductors.

https://www.chalmers.se/en/centres/wacqt/Pages/default.aspx

The Majorana particle was predicted by the Italian physicist Ettore Majorana in 1937. It is a highly original fundamental particle which - like electrons, neutrons and protons - belongs to the group of fermions. Unlike all other fermions the Majorana fermion is its own antiparticle.

Chalmers University of Technology

Related Superconductivity Articles:

Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Discovery in new material raises questions about theoretical models of superconductivity
The US Department of Energy's Ames Laboratory has successfully created the first pure, single-crystal sample of a new iron arsenide superconductor, CaKFe4As4, and studies of this material have called into question some long-standing theoretical models of superconductivity.
Superconductivity with two-fold symmetry -- new evidence for topological superconductor SrxBi2Se3
Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function.
Portable superconductivity systems for small motors
Superconductivity is one of modern physics' most intriguing scientific discoveries.
Graphene's sleeping superconductivity awakens
The intrinsic ability of graphene to superconduct (or carry an electrical current with no resistance) has been activated for the first time.
Superconductivity of pure Bismuth crystal at 0.00053 K
Scientists at TIFR Mumbai have discovered superconductivity of pure Bismuth crystal.
When crystal vibrations' inner clock drives superconductivity
Superconductivity is like an Eldorado for electrons, as they flow without resistance through a conductor.
Physicists induce superconductivity in non-superconducting materials
Researchers at the University of Houston have reported a new method for inducing superconductivity in non-superconducting materials, demonstrating a concept proposed decades ago but never proven.
A new spin on superconductivity
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have made a discovery that could lay the foundation for quantum superconducting devices.
Superconductivity: After the scenario, the staging
Superconductivity with a high Tc continues to present a theoretical mystery.

Related Superconductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...