Phase-transition cubic gallium nitride doubles ultraviolet emission efficiency

February 19, 2018

Novel photonics materials are becoming pivotal for energy conversion, communications, and sensing, largely because there is a global desire to enhance energy efficiency, and reduce electricity consumption. As Dr. Can Bayram, assistant professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign, notes, "Who doesn't want to consume less electricity for the same quality of lighting?"

When the 2014 Nobel Prize in Physics was awarded to a trio of researchers for inventing a new (In)GaN-based energy-efficient, more environmentally friendly light source, this idea was brought to the forefront and gained more widespread recognition.

In related work, the Innovative COmpound semiconductoR Laboratory (ICOR) team led by Prof. Bayram has published a well-received paper titled "High internal quantum efficiency ultraviolet emission from phase-transition cubic GaN integrated on nanopatterned Si(100)". Richard Liu, a Ph.D. candidate advised by Prof. Bayram, and whose primary research areas are optoelectronics and nanophotonics, is the lead author for this paper.

The team's paper and its promise for a novel emitter have recently been featured in Compound Semiconductor and Semiconductor Today.

GaN materials (also known as III-Nitrides) are one of the most exotic photonic materials, and in the U of I team's work, they investigate a new phase of Gallium Nitride materials: cubic. Using aspect ratio nanopatterning technology, they report a hexagonal-to-cubic phase transition process in GaN, enabled through aspect ratio patterning of silicon substrate. The emission efficiency of optimized cubic GaN, thanks to the polarization-free nature of cubic GaN, is measured to be approximately 29%, in sharp contrast to the general percentages of 12%, 8%, and 2%, respectively, of conventional hexagonal GaN on sapphire, hexagonal free-standing GaN, and hexagonal GaN on Si.

Bayram comments that "New photonic materials are critical in next-generation energy conversion devices. GaN-on-Si, enabled through phase-transition technology, provides an efficient, scalable, and environmental solution for integrated visible photonics."
This research work is supported by the National Science Foundation Faculty Early Career Development (CAREER) Program under award number NSF-ECCS-16-52871. Also, Prof. Bayram's graduate student, Richard Liu, is supported with a NASA Space Technology Research Fellowship.

Questions regarding this research? Contact Can Bayram, Department of Electrical and Computer Engineering , 217-300-0978.

University of Illinois College of Engineering

Related Computer Engineering Articles from Brightsurf:

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Achievement isn't why more men are majoring in physics, engineering and computer science
Researchers at New York University's Steinhardt School found that the reason there are more undergraduate men than women majoring in physics, engineering and computer science is not because men are higher achievers.

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Advances in computer modeling, protein development propel cellular engineering
A review of recent work in biophysics highlights efforts in cellular engineering, ranging from proteins to cellular components to tissues grown on next-generation chips.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

Read More: Computer Engineering News and Computer Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to