Nav: Home

Epidemiological model lends insight to chlamydia outbreak in Japan

February 19, 2019

Mathematical models that quantify the dynamics of infectious diseases are crucial predictive tools for the control of ongoing and future outbreaks. An infection's basic reproduction number (R0) is especially important to disease modeling and epidemiology, as it determines global behavior and measures a disease's transferability within a fully-susceptible population. In short, R0 helps public health officials discern an epidemic's intensity and the likelihood of its successful spread. If R0>1, an outbreak occurs. If R0<1, the infection typically dies out.

Sometimes a disease is endemic, meaning that it is continuously present and maintained at a baseline level in a specific location. In these cases, the number of infective individuals remains nearly static and in endemic equilibrium. Chlamydia, a sexually transmitted disease in both men and women that can cause significant damage to a woman's reproductive system, has been endemic in Japan since 2012. To mathematically estimate R0 for chlamydia's pervasiveness in Japan, one must clarify the stability of the corresponding model's endemic equilibrium.

In an article publishing on February 19th in the SIAM Journal on Applied Mathematics, a publication of the Society for Industrial and Applied Mathematics, Toshikazu Kuniya studies the global behavior of a multi-group SIR epidemic model with age structure and uses the model to estimate R0 for Japan's chlamydia outbreak. Kuniya has been modeling infectious diseases since he was a master's student and is especially curious about their global behavior. "I have recently become interested in the application of epidemic models to their epidemiological considerations," he said. "I think the global behavior of epidemic models plays an important role in understanding infectious disease data in the long-time scale." An SIR model--which stands for susceptible, infective, and recovered--is a simple compartmental model and one of the most basic mechanisms of mathematical epidemiology. It divides the total population of an affected area into the three aforementioned classes. This type of model converges to a disease-free equilibrium when R0<1 and an endemic equilibrium when r0>1.

While Kuniya's model is quite similar to one employed by previous researchers, Kuniya reformats it into a multi-group model with age-dependent susceptibility. "I chose a multi-group SIR epidemic model with age structure because it is useful to handle the data with the heterogeneity (sex, age, position, etc.) of each person," he said. "The age structure enables us to consider the effects of the demographic age distribution's time variation and the age-dependency of each epidemic parameter." For the sake of simplicity, Kuniya assumes that the sum of the mortality and recovery rates is constant. He also weakens some of the prior model's restrictive assumptions that prevented successful application. "Under the previous assumption, the disease transmission coefficient was independent of the state of infective individuals," Kuniya said. "In this study, we have weakened this assumption to be able to consider the disease transmission coefficient's possible dependence on the state of infective individuals. By virtue of this, we can model the disease transmission from male individuals to female individuals and vice versa." Doing so allows him to prove that R0 completely determines the model's global behavior. It also eliminates the possibility of an unstable endemic equilibrium if R0>1.

After establishing his model, Kuniya applies it to the 2015 manifestation of chlamydia in Japan, for which there is an available heterogeneous dataset arranged by age and sex. Chlamydia's seemingly endemic state in recent years also made the disease an appropriate target. Kuniya examines four particular cases--in the form of a homogenous model, an age-independent two-sex model, an age-dependent one-sex model, and an age-dependent two-sex model--and compares the estimated results of R0. These special cases yield an R0 estimate between 1.0148 and 1.0535 for chlamydia in Japan. His analysis also reveals that introduction of an age structure impacts the value of R0 more strongly than application of a two-group structure. This indicates that ordinary differential equation models lacking age structure--while typically easier to use than partial differential equation models with age structure--might ultimately underestimate R0. Throughout the course of his investigation, Kuniya assumes that all infective individuals are documented, when in reality some occurrences of chlamydia likely go unreported -- especially because the disease often shows no symptoms. This discrepancy may have led to underestimated R0 values for the four individual cases. Accounting for unreported cases and improving the estimation's overall accuracy is a task for forthcoming study.

In the future, Kuniya hopes to apply his findings to more general models with more than two groups, which requires an increasingly elaborate dataset. "I think we can improve the estimation of R0 and other epidemic parameters by using a more detailed dataset subdivided according to the heterogeneity--for instance, sexual activity--of each individual," he said. "We can apply our theoretical results to more general cases with arbitrary numbers of groups."
-end-
Source article: Kuniya, Toshikazu. (2019). Global Behavior of a Multi-group SIR Epidemic Model with Age Structure and an Application to the Chlamydia Epidemic in Japan. SIAM J. Appl. Math. To be published.

Society for Industrial and Applied Mathematics

Related Infectious Diseases Articles:

COVID-19 a reminder of the challenge of emerging infectious diseases
The emergence and rapid increase in cases of coronavirus disease 2019 (COVID-19), a respiratory illness caused by a novel coronavirus, pose complex challenges to the global public health, research and medical communities, write federal scientists from NIH's National Institute of Allergy and Infectious Diseases (NIAID) and from the Centers for Disease Control and Prevention (CDC).
Certain antidepressants could provide treatment for multiple infectious diseases
Some antidepressants could potentially be used to treat a wide range of diseases caused by bacteria living within cells, according to work by researchers in the Virginia Commonwealth University School of Medicine and collaborators at other institutions.
Opioid epidemic is increasing rates of some infectious diseases
The US faces a public health crisis as the opioid epidemic fuels growing rates of certain infectious diseases, including HIV/AIDS, hepatitis, heart infections, and skin and soft tissue infections.
Infectious diseases could be diagnosed with smartphones in sub-Saharan Africa
A new Imperial-led review has outlined how health workers could use existing phones to predict and curb the spread of infectious diseases.
The Lancet Infectious Diseases: Experts warn of a surge in vector-borne diseases as humanitarian crisis in Venezuela worsens
The ongoing humanitarian crisis in Venezuela is accelerating the re-emergence of vector-borne diseases such as malaria, Chagas disease, dengue, and Zika virus, and threatens to jeopardize public health gains in the country over the past two decades, warn leading public health experts.
Glow-in-the-dark paper as a rapid test for infectious diseases
Researchers from Eindhoven University of Technology (The Netherlands) and Keio University (Japan) present a practicable and reliable way to test for infectious diseases.
Math shows how human behavior spreads infectious diseases
Mathematics can help public health workers better understand and influence human behaviors that lead to the spread of infectious disease, according to a study from the University of Waterloo.
Many Americans say infectious and emerging diseases in other countries will threaten the US
An overwhelming majority of Americans (95%) think infectious and emerging diseases facing other countries will pose a 'major' or 'minor' threat to the U.S. in the next few years, but more than half (61%) say they are confident the federal government can prevent a major infectious disease outbreak in the US, according to a new national public opinion survey commissioned by Research!America and the American Society for Microbiology.
Decline in deaths from most infectious diseases in US, large differences among counties
Deaths due to most infectious diseases decreased in the United States from 1980 to 2014, although there were large differences among counties.
AI to fight the spread of infectious diseases
Public outreach campaigns can prevent the spread of devastating yet treatable diseases such as tuberculosis (TB), malaria and gonorrhea.
More Infectious Diseases News and Infectious Diseases Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.