Nav: Home

LOFAR radio telescope reveals secrets of solar storms

February 19, 2019

An international team of scientists led by a researcher from Trinity College Dublin and University of Helsinki announced a major discovery on the very nature of solar storms in the journal Nature Astronomy.

The team showed that solar storms can accelerate particles simultaneously in several locations by combining data from the Low Frequency Array, LOFAR, with images from NASA, NOAA and ESA spacecraft.

The Sun is the closest star to our planet in the Universe, and like many stars, it is far from quiet. Sunspots, many times the size of Earth, can appear on its surface and store enormous reservoirs of energy. And it is within these regions that huge explosions called solar storms occur. Solar storms are spectacular eruptions of billions of tonnes of hot gas travelling at millions of kilometres an hour. The Nature paper studied a particularly large solar storm on September 10, 2017, soon after the LOFAR station in Ireland had been turned on.

How to predict space weather

"Our results are very exciting as they give us an amazingly detailed insight into how solar storms propagate away from the Sun and where they accelerate fast particles with speeds close to the speed of light", says Dr Diana Morosan, the lead author on the publication, and affiliated with Trinity College Dublin and the University of Helsinki.

These results may in the future help us to produce more accurate forecasts of when solar radio bursts occur and how the solar storm impacts the Earth. If they impact the Earth, they can produce beautiful displays of the aurora, but they can also cause problems with communication and navigation systems and power grids.

Our society is now even more dependent on technology, and solar storms have the potential to cause significant effect on their performance.

In 1859, the largest solar storm ever observed - the so-called Carrington Event - erupted. Within hours, it generated displays of the aurora as far south as Italy and Cuba and caused interruptions in early telegraph systems in Europe and the US.

In 2003, transformers in South Africa were damaged, while Swedish air traffic control systems were closed down in 2015 for more than an hour due to effects associated with a solar storm. More than 50 satellites reported problems. More recently, emergency response communications were interrupted during hurricane season in September 2017 in the Caribbean.

"We used data from the Low Frequency Array, LOFAR, together with images from NASA, NOAA and ESA spacecraft to show where solar storms accelerate fast particles", says Morosan.

"At University of Helsinki, this work has been supported by the Finnish Centre of Excellence in Research for Sustainable Space (FORESAIL), which aims find out how solar storms accelerate particles", says Emilia Kilpua, currently working as an Associate Professor as part of the Centre of Excellence in Research of Sustainable Space https://www.helsinki.fi/en/researchgroups/finnish-centre-of-excellence-in-research-of-sustainable-space.
-end-
Reference:

Multiple regions of shock-accelerated particles during a solar coronal mass ejection; Diana E. Morosan, Eoin P. Carley, Laura A. Hayes, Sophie A. Murray, Pietro Zucca, Richard A. Fallows, Joe McCauley, Emilia K. J. Kilpua, Gottfried Mann, Christian Vocks & Peter T. Gallagher . Nature Astronomy (2019) http://dx.doi.org/10.1038/s41550-019-0689-z

More Information:

Lead author on Nature Astronomy paper:

Dr Diana Morosan
Trinity College Dublin and University of Helsinki
Email: diana.morosan@helsinki.fi
Phone: +358 50 317 5827

Associate Professor Emilia Kilpua, https://tuhat.helsinki.fi/portal/fi/person/ekilpua
Email: emilia.kilpua@helsinki.fi
Phone: +358 294150615

University of Helsinki

Related Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
Journal AAS publishes first data description paper: Data collection and sharing
AAS published its first data description paper on June 8, 2017.
73 percent of academics say access to research data helps them in their work; 34 percent do not publish their data
Combining results from bibliometric analyses, a global sample of researcher opinions and case-study interviews, a new report reveals that although the benefits of open research data are well known, in practice, confusion remains within the researcher community around when and how to share research data.
Designing new materials from 'small' data
A Northwestern and Los Alamos team developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
What to do with the data?
Rapid advances in computing constantly translate into new technologies in our everyday lives.
Why keep the raw data?
The increasingly popular subject of raw diffraction data deposition is examined in a Topical Review in IUCrJ.
Infrastructure data for everyone
How much electricity flows through the grid? When and where?
Finding patterns in corrupted data
A new 'robust' statistical method from MIT enables efficient model fitting with corrupted, high-dimensional data.
Big data for little creatures
A multi-disciplinary team of researchers at UC Riverside has received $3 million from the National Science Foundation Research Traineeship program to prepare the next generation of scientists and engineers who will learn how to exploit the power of big data to understand insects.

Related Data Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".