Nav: Home

Researchers develop new one-two punch against melanoma in mouse model

February 19, 2019

Researchers at the Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins and the Johns Hopkins University School of Medicine report two new forms of an older anti-cancer agent they developed appear to enhance the immune system's ability to fight melanoma in mice. The agents, dubbed s-DAB-IL-2 and s-DAB-IL-2(V6A), comprise a regulatory protein called human interleukin-2 fused to chemically modified portions of diphtheria toxin.

In a mouse model of melanoma, the two agents, when given together, depleted so-called T regulatory cells that infiltrate tumors and hinder the immune system's ability to fight cancer, according to the researchers, whose published report on the experiments appears in the February issue of Proceedings of the National Academy of Sciences.

The investigators said each of the compounds individually depleted the regulatory cells in the mice, but increased the depletion rate when used before an immunotherapy treatment known as checkpoint blockade, providing a one-two punch against cancer.

"Our study demonstrates that these proteins show good potential as an immunotherapy option," says senior study author William Bishai, M.D., Ph.D., professor of medicine. "When paired with checkpoint inhibitor therapy, they allow the immune system to develop a much more robust, one-two punch, anti-tumor response leading to an almost complete knockout of tumor."

Bishai says more animal research, along with safety and effectiveness studies in humans, must be done before the proteins can be prescribed for people with melanoma, a skin cancer that although relatively rare, kills about 7,300 Americans each year.

The novel proteins used in the mouse experiments are re-engineered forms of denileukin diftitox (DAB-IL-2), a diphtheria toxin-based fusion protein that was approved by the U.S. Food and Drug Administration in 1999 and marketed under the name Ontak for the treatment of persistent or recurrent cutaneous T-cell lymphoma, a cancer of the immune system. Ontak was prescribed for 11 years for other conditions as well, including peripheral T-cell lymphoma, graft versus host disease and psoriasis. Then, in 2011, the FDA put the drug on clinical hold, in part because up to 25 percent of patients who received it developed vascular leak syndrome, a condition marked by fluid retention, or lung or heart failure.

Ontak was developed by study co-author John "Jack" Murphy, Ph.D., professor of medicine at Johns Hopkins, when he worked at Harvard Medical School. Bishai was one of his graduate students in the 1980s.

DAB-IL-2 sprouted from an interest in diphtheria toxin, which was long recognized as a potent biological poison, Murphy says. He worked for years to engineer a form of the toxin that would attach only to cells that had specific receptors they wanted to target.

One study Murphy and Bishai worked on, published in 1986, targeted the biologic activity of diphtheria toxin specifically to melanoma cells.

"That was the first indication that we could deliberately change the target cell specificity of DT from a generalized poison to a poison that would only go to cells we wanted to eliminate," says Murphy.

At the time it was put on hold, DAB-IL-2 was considered a potential immunotherapy to deplete T regulatory cells in patients with advanced, malignant melanoma that could no longer be treated with surgery. Phase 2 clinical studies demonstrated it was at least as effective in stopping tumor progression or possibly more effective than checkpoint inhibitors alone, Murphy says.

Murphy came to Johns Hopkins in 2015 to work with Bishai again, with the mentor choosing to work with the mentee, and in a bid to solve the vascular leakage and other toxicity problems associated with DAB-IL-2, they partnered with Drew Pardoll, M.D., Ph.D., director of the Bloomberg~Kimmel Institute for Cancer Immunotherapy.

"The current study demonstrates what we believe is the continuing potential of this agent as a molecule able to re-establish the balance of the immune system in the treatment of solid tumors such as melanoma," says Murphy. In their paper, Bishai, Murphy, Pardoll and colleagues describe their production of two second-generation forms of the engineered toxins, DAB-IL-2: s-DAB-IL-2 and s-DAB-IL-2(V6A). The V6A form substitutes an amino acid associated with vascular leak syndrome, resulting in a 50-fold reduction of the syndrome in test tube studies.

For the mouse experiments, the team first injected the animals with either regular s-DAB-IL-2 or the V6A form seven and 10 days after being injected with tumor cells.

Both drugs depleted T regulatory cells in the lymph nodes by 50 percent and inhibited tumor growth by 75 percent when evaluated 24 days after the first tumor cell injection. Then, they tried using these proteins followed by an anti-PD-1 checkpoint inhibitor. Mice with melanoma tumors were treated 10 days after tumor initiation with either a control drug, the checkpoint inhibitor, s-DAB-IL-2 or s-DAB-IL-2(V6A) as solo therapies.

Other mice were treated on days 10 and 13 with s-DAB-IL-2 or s-DAB-IL-2(V6A) and then with anti-PD-1 on days 11, 14 and twice a week after that.

When used alone in more advanced tumors, anti-PD-1, s-DAB-IL-2 and s-DAB-IL-2(V6A) had a modest effect on tumors, but when administered as a sequential therapy with anti-PD-1, both s-DAB-IL-2 and s-DAB-IL-2(V6A) had what Bishai calls a "remarkable" inhibition of tumor growth, showing a 10-fold reduction in tumor size.

Examining tumors removed from the mice, the investigators noted a significant increase in interferon gamma-producing CD8 T-cells, important anti-tumor effector cells.

In additional studies, the team has created an alternate form of the protein that removes IL-2 and substitutes other targeting proteins. This compound has shown some promise in laboratory studies of breast cancer in mice, Bishai says.
Coauthors were Laurene Cheung, Juan Fu, Pankaj Kumar, Amit Kumar, Michael Urbanowski, Elizabeth Ihms, Sadiya Parveen, C. Bullen and Garrett Patrick of Johns Hopkins, and Robert Harrison of Northeastern University in Boston.

The work was supported by the National Institutes of Health (grants R21 AI130595, R01 AI36973, R01 HL133190 and P30 CA00693); Maryland TEDCO (Project #0916-006); the Abell Foundation; the Cigarette Restitution Fund; and The Bloomberg~Kimmel Institute for Cancer Immunotherapy.

COI: Murphy, Pardoll and Bishai hold positions in Sonoval, LLC, which holds rights to develop s-DAB-IL-2(V6A). These relationships are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Johns Hopkins Medicine

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...