Nav: Home

In the blink of an eye: Team uses quantum of light to create new quantum simulator

February 19, 2019

Imagine being stuck inside a maze and wanting to find your way out. How would you proceed? The answer is trial and error. This is how traditional computers with classical algorithms operate to find the solution to a complex problem. Now consider this: What if, by magic, you were able to clone yourself into multiple versions so that you were able to go through all the various paths at the same time? You'd find the exit almost instantly.

Turns out we're not talking about magic -- we're talking atomic and subatomic particles. An electron, for instance, can be in multiple places at once. This is a fundamental principle of nature known in quantum mechanics as the superposition principle.

Now, imagine if we take advantage of this principle and apply it to our classical simulators and computers. Imagine how dramatically more efficient we'd be at information processing!

This is the principle behind quantum computers and quantum simulators. In essence, quantum computers use the subatomic particles' ability to exist in more than one place at once.

Quantum simulators are not just good for efficiency in processing times, but they are the "natural" choice to simulate simple and complex systems in nature. This is a direct consequence of the fact that nature is ultimately governed by the laws of quantum mechanics.

Quantum simulators provide us with an excellent opportunity to simulate fundamental aspects of nature and understand their hidden dynamics without even looking into the complexities arising from the various particles and their interactions. This is precisely the motive behind the research of Professor Ebrahim Karimi and his team.

Karimi's team simulates periodic and closed structures in nature, such as ring-shaped molecules and crystalline lattices, by invoking the quantum mechanical properties of light. The results can help us understand the dynamics involved in such systems as well as open the possibility for developing efficient photonic-based quantum computers.

Karimi's team has successfully built and operated the first-ever quantum simulator designed specifically for simulating cyclic (ringed-shaped) systems. A quantum simulator simulates a quantum system. The team used the quantum of light (photon) to simulate the quantum motion of electrons inside rings made of different number of atoms. The experiment results revealed that the physics of ring-shaped systems are fundamentally different from those of line-shaped ones.

In doing so, the team established a powerful experimental technique to simulate a wide class of atomic systems and opened a new window to explore many opportunities resulting from its work.

"We anticipate that, within a short period of time, our research will have a very large impact in various disciplines, ranging from medicine to computer science, from organic chemistry and biology to materials science and fundamental physics," says Dr. Farshad Nejadsattari, one of Karimi's postdoctoral fellows, who was part of the project.

In a quantum simulator, a quantum particle that can be easily controlled and is physically well understood (in our case a particle of light, a photon) is allowed to propagate inside a system designed to be similar to that which is being simulated.

Some interesting discoveries from this experiment includes finding specific ways to distribute the particle on the ring such that the distribution never changes as the particle propagates, and also finding cases whereby the particle first spreads itself on the ring and then re-emerges at the location where it was initially placed. This has never been seen experimentally in any quantum simulator.

With quantum simulation techniques becoming more mature and complex, synthesizing new materials, chemicals and drug development will be greatly simplified. The quantum simulator will help provide all the information one needs in the blink of an eye.
-end-
To learn more, read the team's paper, titled Experimental realization of wave-packet dynamics in cyclic quantum walks, recently published in Optica.

University of Ottawa

Related Quantum Computers Articles:

Quantum computers learn to mark their own work
A new test to check if a quantum computer is giving correct answers to questions beyond the scope of traditional computing could help the first quantum computer that can outperform a classical computer to be realised.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Blanket of light may give better quantum computers
Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.
One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
Newfound superconductor material could be the 'silicon of quantum computers'
Newly discovered properties in the compound uranium ditelluride show that it could prove highly resistant to one of the nemeses of quantum computer development -- the difficulty with making such a computer's memory storage switches, called qubits, function long enough to finish a computation before losing the delicate physical relationship that allows them to operate as a group.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
The best of both worlds: how to solve real problems on modern quantum computers
Researchers at the US Department of Energy's (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on size-limited quantum machines and have demonstrated them for practical applications.
A new theory for trapping light particles aims to advance development of quantum computers
Researchers have developed a new protocol for ensuring the stability of data when photons are stored for extended periods of time.
More Quantum Computers News and Quantum Computers Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab