Nav: Home

Nanopores make portable mass spectrometer for peptides a reality

February 19, 2019

University of Groningen scientists have developed nanopores that can be used to directly measure the mass of peptides. Although the resolution needs to be improved, this proof of principle shows that a cheap and portable peptide mass spectrometer can be constructed using existing nanopore technology and the patented pores that were developed in the lab of University of Groningen Associate Professor of Chemical Biology, Giovanni Maglia. An article on this discovery was published in Nature Communications on 19 February.

Mass spectrometers are invaluable for studying proteins, but they are both bulky and expensive, which limits their use to specialized laboratories. 'Yet, the next revolution in biomedical studies will be in proteomics, the large-scale analysis of proteins that are expressed in different cell types', says Maglia. For although each cell in your body carries the same DNA, the production of proteins differs hugely between cell types. 'And also, proteins are modified after they have been produced, for example by adding sugars that can affect their function.'

Mass

Nanopore technology could offer a way to analyze single molecules. In previous work, Maglia already showed that biological nanopores can be used to measure metabolites and to identify proteins and peptides. These pores are large protein structures, incorporated in a membrane. Molecules entering a pore or passing through it cause a change in an electric current across the pore. 'A problem in measuring the mass of peptides is that they pass too quickly through even the smallest biological pore to get a reading', explains Maglia.

Making smaller pores was a challenge. 'Pores are made up from a number of monomers, so we initially modified the interaction between these monomers, but that didn't work.' The observation that mixing monomers with larger amounts of lipids - which make up the membrane - resulted in a larger percentage of smaller pores gave Maglia and his team the idea to modify the interaction between monomers and lipids. This indeed resulted in pores made up from a smaller number of monomers, which reduced pore size.

Smallest pores ever

Maglia was then able to produce funnel-shaped pores which, at their narrow end, only measured 0.84 nanometres. 'These are the smallest biological pores ever produced.' The next challenge was to ensure that peptides would pass through the pores, irrespective of their chemical composition. 'The pores have a negative charge, which is necessary for their proper function', explains Maglia.

The charge causes water to flow through the pore, dragging the peptides along. But negatively charged peptides would be repelled by the negative charge at the thin funnel end. Maglia modified the charge by altering the acidity of the fluids used. 'Eventually, we managed to find the right conditions by setting the acidity at a pH of exactly 3.8. This allows negatively charged peptides to pass through while maintaining a large enough water flow through the pores.'

Resolution

Measurements across nanopores of different sizes show that the electric current is linear with the volume of the peptide passing through. These peptides ranged from 4 to 22 amino acids in length. The difference between the amino acids alanine and glutamate could be measured in this system, which meant the resolution is around 40 Dalton (a measure for protein mass). 'The resolution of conventional mass spectrometers is much better, but if we could get the system about forty times more sensitive, it would already be useful in proteomics research', says Maglia. There are a number of ways to improve the resolution, says Maglia. 'We could engineer the nanopore with artificial amino acids, or use different ions in our solutions, reduce the noise by changing the temperature etcetera.'

The nanopore system has several unique selling points: it measures single molecules, the technology itself is already commercially available and it is relatively cheap. Furthermore, the nanopore system is portable. And, by using many different pores in a device, you can simultaneously measure differently-sized peptides and even peptide modifications. 'All of this means that a versatile and cheap mass spectrometer for peptide analysis is feasible', says Maglia. 'And that would mean that more laboratories would be able to afford to conduct very important proteomics studies.'
-end-
Reference: Gang Huang, Arnout Voet, Giovanni Maglia: FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 Dalton resolution. Nature Communications 19 February 2019.

University of Groningen

Related Amino Acids Articles:

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.
A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.
Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.