A spookily good sensor

February 19, 2020

Tokyo, Japan - Scientists from the Research Center for Advanced Science and Technology (RCAST) at The University of Tokyo demonstrated a method for coupling a magnetic sphere with a sensor via the strange power of quantum entanglement. They showed that the existence of even a single magnetic excitation in the sphere could be detected with a one-shot measurement. This work represents a major advancement toward quantum systems that can interact with magnetic materials.

Imagine having a sensor powerful enough to tell you, in a single sweep, if a nearby haystack contained a needle or not. Such a device might seem like it could exist only in science fiction, but, using one of the most counterintuitive effects of quantum mechanics, this level of sensitivity can become reality. Entanglement, the strange process at the heart of quantum mechanics that allows linked particles to interact instantly over long distances, was once called "spooky action at a distance" by Albert Einstein.

Experiments have confirmed that quantum mechanics permits situations in which parts of a system can no longer be described separately, but rather become fundamentally entangled, such that measurement of one automatically determines the fate of the other. For example, two electrons can become entangled so that they are both pointing up or both pointing down - so measuring one instantly affects the state of the other. "Entanglement has been in quantum mechanics textbooks for decades," says first author Dr. Dany Lachance-Quirion, "but the applications for producing very sensitive detectors with it are only now starting to be realized."

In the experiments conducted at RCAST, a millimeter-sized sphere of yttrium iron garnet was placed in the same resonant cavity as a superconducting Josephson junction qubit, which acted as the sensor. Because of the coupling of the sphere to resonant cavity, and, in turn, between the cavity to the qubit, the qubit could only be excited by an electromagnetic pulse if no magnetic excitations were present in the sphere. Reading the state of the qubit then reveals the state of the sphere.

"By using single-shot detection instead of averaging, we were able to make our device both highly sensitive and very fast," Professor Yasunobu Nakamura explains. "This research could open the way for sensors powerful enough to help with the search for theoretical dark-matter particles called axions."
-end-
The work is published in the journal Science as "Entanglement-based single-shot detection of a single magnon with a superconducting qubit."

Japan Science and Technology Agency

Related Quantum Mechanics Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

A new interpretation of quantum mechanics suggests reality does not depend on the measurer
For 100 years scientists have disagreed on how to interpret quantum mechanics.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Fluid mechanics mystery solved
An environmental engineering professor has solved a decades-old mystery regarding the behavior of fluids, a field of study with widespread medical, industrial and environmental applications.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.

Read More: Quantum Mechanics News and Quantum Mechanics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.