Nav: Home

A new model of the worm C. elegans to progress in the study of a rare disease

February 19, 2020

The model will permit to accelerate and reduce the price of the research, which is studying the mechanisms and the possible pharmacological targets for the neuronal alterations of this disease.

The earliest results of studies with this organism point to glial cells as a man responsible for the neurological damage caused by the disease.

Chromosome X-linked adrenoleukodystrophy (X ALD) is a rare genetic disease in which long-chain fatty acids accumulate in the blood and the nervous tissue, and where the myelin in the neurons is damaged. People who suffer from it (1 in 14,700 newborns) may have, among other things, brain and mobility problems, as well as hormonal disorders. The cause is a deficiency in the ABCD1 gene, which encodes the adrenoleukodystrophy protein (ALDP), which transports long-chain fatty acids to peroxisomes. These organelles play a very important role in lipid degradation and their subsequent cell use.

This work has identified and characterized the worm Caenorhabditis elegans (C. elegans) as a model of the disease, this model is deficient for the human analog protein (homologous) ALDP. The research team, co-led by Dr. Aurora Pujol and Esther Dalfó, analyzed the consequences of this deficit on a cellular level and found that, as in human and in existing mouse models, exists an accumulation of long-chain fatty acids, changes in lipid metabolism, oxidative imbalances in the mitochondria and neuronal disorders. The model will allow accelerating the study of this disease, for which there is currently no treatment.

The work, published in Free Radical Biology and Medicine, has involved ICREA researchers from the Bellvitge Biomedical Research Institute (IDIBELL), the Network Biomedical Research Center (CIBERER), the Neurosciences Institute of the Autonomous University of Barcelona (INc-UAB), the Faculty of Medicine of the University of Vic - Central University of Catalonia (UVic-UCC), the Kennedy Krieger Institute from Baltimore, the MRC Mitochondrial Biology Unit from Cambridge, and the Institute of Biomedicine from Seville (IBIS).

A valuable genetic tool

"This model of adrenoleukodystrophy in C. elegans is a very valuable genetic tool that will allow us to study the mechanisms involved in the disease and to find pharmacological targets faster than with other animal models, such as mice, which are much more complex and involve a costly and economically expensive process," says Esther Dalfó, who now is leading the C elegans models of diseases group between INC-UAB and the UVic-UCC.

The research team has obtained its first results, which, despite being preliminary, suggest that glial cells, which are in the brain together with neurons, would be the first responsible for the neurological alterations associated with the disease.

"This new animal model has helped us to confirm that oxidative stress caused by mitochondria (the energy-producing organelles of cells) is the major cause of neuronal damage in adrenoleukodystrophy, and this mechanism of damage is conserved from the worm to the patient. The data point to new therapeutic pathways, such as mitochondrial antioxidants in peroxisome disease", says Aurora Pujol ICREA professor at IDIBELL.

C. elegans, neurons and genes like humans

The earthworm C. elegans is widely used in biomedical research because, despite being simple and small (measuring only 1 mm), it has most of the most complex animal structures and share most of the metabolic pathways with us. Besides, 40% of its genome is homologous to our genes and has a representation of all the neural populations in the human brain.

The genetic manipulation of this organism to create transgenic models to the study of the disease, such as X ALD, is faster than with other animal models such as rats or mice. Overall, taking into account characteristics like body transparency, numerous reproductions -up to 300 descendants- and the low cost, make the C. elegans an ideal tool for lab use.
-end-


IDIBELL-Bellvitge Biomedical Research Institute

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.