Research shows the way to more efficient EPO production

February 19, 2020

To many people, EPO rhymes with doping and cycling. But in fact, EPO is an important medical drug. This hormone works naturally in the body by stimulating red blood cell production. Patients suffering from anemia caused by for instance chronic kidney disease, AIDS or hematologic disorders can benefit immensely from EPO therapy. Furthermore, many cancer patients who are anemic from receiving chemotherapy are also in great need of EPO therapy. It is estimated that the market for EPO therapy is around 11 billion dollars annually.

Today, medical EPO is produced in mammalian cell lines using so-called recombinant DNA technology, where human genes are inserted to produce recombinant human EPO (rhEPO).

Recombinant human hormones such as EPO can be challenging to produce effectively, though, because they are quickly degraded by, amongst other things, the cells' own protein- and hormone-eating enzymes.

Using CRISPR technology, researchers from The Novo Nordisk Foundation Center for Biosustainability at Technical University of Denmark (DTU) have looked into how to reduce several cellular 'stressors' in order to improve production and product quality. This work has recently been published in the journal Metabolic Engineering.

The researchers found that by knocking out three genes involved in sugar group degradation and two involved in programmed cell death, they could improve production by 1.4-fold in Chinese Hamster Ovary (CHO) cells. Furthermore, the quality was greatly improved. The knockout cells contained around 40% of the most active EPO form, while the non-knockouts only contained around 2% of the most active EPO form (the highly sialylated EPO). The highly sialylated EPO form is important as it has the longest half-life. Only active EPO can treat conditions of anemia, so improving this feature is imperative in order to keep prices low and quality high.

How to avoid EPO degradation

The optimised cell line was actually designed to work in so-called fed-batch cultures, which is a way of feeding the cells continuously over the course of 10-14 days. Fed-batch is a commonly used method to make human hormones for various conditions and antibodies for cancer treatment.

But it is hard to produce EPO in fed-batch, because it is destroyed over time. Thus, EPO is nowadays produced in a 'one-feeding' manner (batch cultures), even though this method is less efficient. In order to do fed-batch cultures despite these obstacles, others have tried adding supplements to the mixture to avoid degradation. But with this new cell line, there is no need for workarounds, explains first author Tae Kwang Ha, Postdoc at The Novo Nordisk Foundation Center for Biosustainability:

"With our cell line, you don't have to add anything - it just works."

These results have only been shown at small scale, so scale-up is needed to see if cells perform equally well in big production tanks. But this research verifies that knockout of specific genes can definitely improve productivity and product quality in single cells.
-end-


Technical University of Denmark

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.