Controlling CAR T cells with light selectively destroys skin tumors in mice

February 19, 2020

Bioengineers at the University of California San Diego have developed a control system that could make CAR T-cell therapy safer and more powerful when treating cancer. By programming CAR T cells to switch on when exposed to blue light, the researchers controlled the cells to destroy skin tumors in mice without harming healthy tissue.

In tests in mice, administering the engineered CAR T cells and stimulating the skin tumor sites with blue LED light reduced tumor size by eight to ninefold. The results were observed in nine out of ten mice tested. Engineered CAR T cells on their own did not inhibit tumor growth.

The work is published Feb. 19 in Science Advances.

Chimeric antigen receptor (CAR) T-cell therapy is a promising new approach to treat cancer. It involves collecting a patient's T cells and genetically engineering them to express special receptors on their surface that can recognize an antigen on targeted cancer cells. The engineered T cells are then infused back into the patient to find and attack cells that have the targeted antigen on their surface.

While this approach has worked well for some types of blood cancer and lymphoma, it so far has not worked well against solid tumors. One reason is because many targeted cancer antigens are also expressed on healthy cells.

"It is very difficult to identify an ideal antigen for solid tumors with high specificity so that CAR T cells only target these diseased tumor sites without attacking normal organs and tissues," said Peter Yingxiao Wang, a professor of bioengineering at the UC San Diego Jacobs School of Engineering and the senior author of the study. "Thus, there is a great need to engineer CAR T cells that can be controlled with high precision in space and time."

To create such cells, Wang and his team installed an on-switch that would allow them to activate the CAR T cells at a specific site in the body. The switch uses two engineered proteins located inside the CAR T cell that bind when exposed to one-second pulses of blue light. Once bound together, the proteins trigger expression of the antigen-targeting receptor.

Since light cannot penetrate deeply in the body, Wang envisions that this approach could be used to treat solid tumors near the surface of the skin. For future studies, Wang is looking to collaborate with clinicians to test the approach on patients with melanoma.
-end-
Paper title: "Engineering Light-controllable CAR T Cells for Cancer Immunotherapy." Co-authors include Ziliang Huang*, Yiqian Wu*, Molly Allen, Yijia Pan, Phillip Kyriakakis, Shaoying Lu, Ya-Ju Chang, Xin Wang and Shu Chien, UC San Diego.

*These authors contributed equally to this work.

This work is supported by the National Institutes of Health and UC San Diego.

University of California - San Diego

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.