Grabbing atoms

February 19, 2020

In a first for quantum physics, University of Otago researchers have "held" individual atoms in place and observed previously unseen complex atomic interactions.

A myriad of equipment including lasers, mirrors, a vacuum chamber, and microscopes assembled in Otago's Department of Physics, plus a lot of time, energy, and expertise, have provided the ingredients to investigate this quantum process, which until now was only understood through statistical averaging from experiments involving large numbers of atoms.

The experiment improves on current knowledge by offering a previously unseen view into the microscopic world, surprising researchers with the results.

"Our method involves the individual trapping and cooling of three atoms to a temperature of about a millionth of a Kelvin using highly focused laser beams in a hyper-evacuated (vacuum) chamber, around the size of a toaster. We slowly combine the traps containing the atoms to produce controlled interactions that we measure," says Associate Professor Mikkel F. Andersen of Otago's Department of Physics.

When the three atoms approach each other, two form a molecule, and all receive a kick from the energy released in the process. A microscope camera allows the process to be magnified and viewed.

"Two atoms alone can't form a molecule, it takes at least three to do chemistry. Our work is the first time this basic process has been studied in isolation, and it turns out that it gave several surprising results that were not expected from previous measurement in large clouds of atoms," says Postdoctoral Researcher Marvin Weyland, who spearheaded the experiment.

For example, the researchers were able to see the exact outcome of individual processes, and observed a new process where two of the atoms leave the experiment together. Until now, this level of detail has been impossible to observe in experiments with many atoms.

"By working at this molecular level, we now know more about how atoms collide and react with one another. With development, this technique could provide a way to build and control single molecules of particular chemicals," Weyland adds.

Associate Professor Andersen admits the technique and level of detail can be difficult to comprehend to those outside the world of quantum physics, however he believes the applications of this science will be useful in development of future quantum technologies that might impact society as much as earlier quantum technologies that enabled modern computers and the Internet.

"Research on being able to build on a smaller and smaller scale has powered much of the technological development over the past decades. For example, it is the sole reason that todays cellphones have more computing power than the supercomputers of the 1980s. Our research tries to pave the way for being able to build at the very smallest scale possible, namely the atomic scale, and I am thrilled to see how our discoveries will influence technological advancements in the future" Associate Professor Andersen says.

The experiment findings showed that it took much longer than expected to form a molecule compared with other experiments and theoretical calculations, which currently are insufficient to explain this phenomenon. While the researchers suggest mechanisms which may explain the discrepancy, they highlight a need for further theoretical developments in this area of experimental quantum mechanics.

This completely New Zealand based research was primarily carried out by members of the University of Otago's Department of Physics, with assistance from theoretical physicists at Massey University.
-end-
The research which was supported by the Marsden Fund, has been published in the international journal Physical Review Letters, at the following link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.073401

For more information contact:

Associate Professor Mikkel Andersen
Department of Physics
University of Otago
Tel 03 4797805
Email Mikkel.andersen@otago.ac.nz

University of Otago

Related Quantum Physics Articles from Brightsurf:

Know when to unfold 'em: Applying particle physics methods to quantum computing
Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

Quantum physics: Physicists successfully carry out controlled transport of stored light
A team of physicists at Mainz University has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters.

New system detects faint communications signals using the principles of quantum physics
Researchers at the National Institute of Standards and Technology (NIST) have devised and demonstrated a system that could dramatically increase the performance of communications networks while enabling record-low error rates in detecting even the faintest of signals.

Quirky response to magnetism presents quantum physics mystery
In a new study just published and highlighted as an Editor's Suggestion in Physical Review Letters, scientists describe the quirky behavior of one such magnetic topological insulator.

Evidence of power: Phasing quantum annealers into experiments from nonequilibrium physics
Scientists at Tokyo Institute of Technology (Tokyo Tech) use commercially available quantum annealers, a type of quantum computer, to experimentally probe the validity of an important mechanism from nonequilibrium physics in open quantum systems.

Adapting ideas from quantum physics to calculate alternative interventions for infection and cancer
Published in Nature Physics, findings from a new study co-led by Cleveland Clinic and Case Western Reserve University teams show for the first time how ideas from quantum physics can help develop novel drug interventions for bacterial infections and cancer.

Quantum physics: Realization of an anomalous Floquet topological system
An international team led by physicists from the Ludwig-Maximilians Universitaet (LMU) in Munich realized a novel genuine time-dependent topological system with ultracold atoms in periodically-driven optical honeycomb lattices.

Quantum physics provides a way to hide ignorance
Students can hide their ignorance and answer questions correctly in an exam without their lack of knowledge being detected by teachers -- but only in the quantum world.

Quantum physics: Physicists develop a new theory for Bose-Einstein condensates
Bose-Einstein condensates are often described as the fifth state of matter: At extremely low temperatures, gas atoms behave like a single particle.

Attosecond physics: Quantum brakes in molecules
Physicists have measured the flight times of electrons emitted from a specific atom in a molecule upon excitation with laser light.

Read More: Quantum Physics News and Quantum Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.