Seeing stable topology using instabilities

February 19, 2021

We are most familiar with the four conventional phases of matter: solid, liquid, gas, and plasma. Changes between two phases, known as phase transitions, are marked by abrupt changes in material properties such as density. In recent decades a wide body of physics research has been devoted to discovering new unconventional phases of matter, which typically emerge at ultra-low temperatures or in specially-structured materials. Exotic "topological" phases exhibit properties that can only change in a quantized (step-wise) manner, making them intrinsically robust against impurities and defects.

In addition to topological states of matter, topological phases of light can emerge in certain optical systems such as photonic crystals and optical waveguide arrays. Topological states of light are of interest as they can form the basis for future energy-efficient light-based communication technologies such as lasers and integrated optical circuits.

However, at high intensities light can modify the properties of the underlying material. One example of such a phenomenon is the damage that the high-power lasers can inflict on the mirrors and lenses. This in turn affects the propagation of the light, forming a nonlinear feedback loop. Nonlinear optical effects are essential for the operation of certain devices such as lasers, but they can lead to the emergence of disorder from order in a process known as modulational instability, as is shown in Figure 1. Understanding the interplay between topology and nonlinearity is a fascinating subject of ongoing research.

Daniel Leykam, Aleksandra Maluckov, and Sergej Flach at the Center for Theoretical Physics of Complex Systems (PCS) within the Institute for Basic Science (IBS, South Korea), along with their colleagues Ekaterina Smolina and Daria Smirnova from the Institute of Applied Physics, Russian Academy of Sciences and the Australian National University, have proposed a novel method to characterize topological phases of light using nonlinear instabilities exhibited by bright beams of light. This research was published in Physical Review Letters.

In this work, the researchers addressed the fundamental question of how topological phases of light in nonlinear optical media undergo the process of modulational instability. It was shown theoretically that certain features of the instability, such as its growth rate, can differ between different topological phases. The researchers performed numerical simulations of the modulational instability and demonstrated that it can be used as a tool to identify different topological phases of light. An example of this idea is shown in Figure 2: While the light beams generated by the instability have seemingly-random patterns of intensity, they exhibit hidden order in their polarization in the form of robust vortices. The number of vortices appearing as a result of the instability is quantized, and they can be used to distinguish different topological phases.

The most common way to identify topological phases of light has been to look at the edges of the material, where certain optical wavelengths become localized. However, a complete characterization requires measuring the bulk properties of the material, which is a much harder task. The light in the bulk material undergoes complicated wave interference and is highly sensitive to defects, which obscures its topological properties. Counterintuitively, the researchers have shown how nonlinear instabilities may be used to tame this unwanted interference and spontaneously encode the bulk topological properties of the material into beams of light. This approach provides a simpler way to probe and perhaps even generate topological states of light.

The next step will be to test this proposal in an experiment. For example, optical waveguide arrays inscribed in a glass will be an ideal platform for this purpose. By shining a bright pulsed laser beam into the glass, it should be possible to directly observe the modulational instability and thereby measure the topological properties of the waveguide array. The research group is currently discussing possible designs for the experimental verification of their theory with collaborators.
-end-


Institute for Basic Science

Related Lasers Articles from Brightsurf:

Breaking the power and speed limit of lasers
Researchers at the George Washington University have developed a new design of vertical-cavity surface-emitting laser (VCSEL) that demonstrates record-fast temporal bandwidth.

Towards lasers powerful enough to investigate a new kind of physics
In a paper that made the cover of the journal Applied Physics Letters, an international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers.

A breakthrough in developing multi-watt terahertz lasers
Researchers from Lehigh University are reporting another terahertz technology breakthrough: they have developed a new phase-locking technique for plasmonic lasers and, through its use, achieved a record-high power output for terahertz lasers.

Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.

Fusion by strong lasers
Nuclear physics usually involves high energies, as illustrated by experiments to master controlled nuclear fusion.

Using lasers to study explosions
An explosion is a complex event involving quickly changing temperatures, pressures and chemical concentrations.

Powerful lasers for fragile works of art
Protecting artworks from the effects of aging requires an understanding of the way materials alter over time.

Physicists propose perfect material for lasers
Weyl semimetals are a recently discovered class of materials, in which charge carriers behave the way electrons and positrons do in particle accelerators.

Lasers make magnets behave like fluids
Researchers have discovered how magnets recover after being blasted by a laser.

Spin lasers facilitate rapid data transfer
Engineers have developed a novel concept for rapid data transfer via optical fibre cables.

Read More: Lasers News and Lasers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.