New technology enables predictive design of engineered human cells

February 19, 2021

Northwestern University synthetic biologist Joshua Leonard used to build devices when he was a child using electronic kits. Now he and his team have developed a design-driven process that uses parts from a very different kind of toolkit to build complex genetic circuits for cellular engineering.

One of the most exciting frontiers in medicine is the use of living cells as therapies. Using this approach to treat cancer, for example, many patients have been cured of previously untreatable disease. These advances employ the approaches of synthetic biology, a growing field that blends tools and concepts from biology and engineering.

The new Northwestern technology uses computational modeling to more efficiently identify useful genetic designs before building them in the lab. Faced with myriad possibilities, modeling points researchers to designs that offer real opportunity.

"To engineer a cell, we first encode a desired biological function in a piece of DNA, and that DNA program is then delivered to a human cell to guide its execution of the desired function, such as activating a gene only in response to certain signals in the cell's environment," Leonard said. He led a team of researchers from Northwestern in collaboration with Neda Bagheri from the University of Washington for this study.

Leonard is an associate professor of chemical and biological engineering in the McCormick School of Engineering and a leading faculty member within Northwestern's Center for Synthetic Biology. His lab is focused on using this kind of programming capability to build therapies such as engineered cells that activate the immune system, to treat cancer.

Bagheri is an associate professor of biology and chemical engineering and a Washington Research Foundation Investigator at the University of Washington Seattle. Her lab uses computational models to better understand -- and subsequently control -- cell decisions. Leonard and Bagheri co-advised Joseph Muldoon, a recent doctoral student and the paper's first author.

"Model-guided design has been explored in cell types such as bacteria and yeast, but this approach is relatively new in mammalian cells," Muldoon said.

The study, in which dozens of genetic circuits were designed and tested, will be published Feb. 19 in the journal Science Advances. Like other synthetic biology technologies, a key feature of this approach is that it is intended to be readily adopted by other bioengineering groups.

To date, it remains difficult and time-consuming to develop genetic programs when relying upon trial and error. It is also challenging to implement biological functions beyond relatively simple ones. The research team used a "toolkit" of genetic parts invented in Leonard's lab and paired these parts with computational tools for simulating many potential genetic programs before conducting experiments. They found that a wide variety of genetic programs, each of which carries out a desired and useful function in a human cell, can be constructed such that each program works as predicted. Not only that, but the designs worked the first time.

"In my experience, nothing works like that in science; nothing works the first time. We usually spend a lot of time debugging and refining any new genetic design before it works as desired," Leonard said. "If each design works as expected, we are no longer limited to building by trial and error. Instead, we can spend our time evaluating ideas that might be useful in order to hone in on the really great ideas."

"Robust representative models can have disruptive scientific and translational impact," Bagheri added. "This development is just the tip of the iceberg."

The genetic circuits developed and implemented in this study are also more complex than the previous state of the art. This advance creates the opportunity to engineer cells to perform more sophisticated functions and to make therapies safer and more effective.

"With this new capability, we have taken a big step in being able to truly engineer biology," Leonard said.
-end-
The research was supported by the National Institute of Biomedical Imaging and Bioengineering (award number 1R01EB026510), the National Institute of General Medical Sciences (award number T32GM008152) and the National Cancer Institute (award number F30CA203325).

The title of the paper is "Model-guided design of mammalian genetic programs."

Northwestern University

Related Synthetic Biology Articles from Brightsurf:

Deep learning takes on synthetic biology
Machine learning is helping biologists solve hard problems, including designing effective synthetic biology tools.

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you
Scientists at Lawrence Berkeley National Laboratory have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically.

Cell-free synthetic biology comes of age
In a review paper published in Nature Reviews Genetics, Professor Michael Jewett explores how cell-free gene expression stands to help the field of synthetic biology dramatically impact society, from the environment to medicine to education.

Scientists develop electrochemical platform for cell-free synthetic biology
Scientists at the University of Toronto (U of T) and Arizona State University (ASU) have developed the first direct gene circuit to electrode interface by combining cell-free synthetic biology with state-of-the-art nanostructured electrodes.

Gene-OFF switches tool up synthetic biology
Wyss researchers and their colloaborators have developed two types of programmable repressor elements that can switch off the production of an output protein in synthetic biology circuits by up to 300-fold in response to almost any triggering nucleotide sequence.

Tennessee researchers join call for responsible development of synthetic biology
Engineering biology is transforming technology and science. Researchers in the international Genome Project-write, including two authors from the UTIA Center for Agricultural Synthetic Biology, outline the technological advances needed to secure a safe, responsible future in the Oct.

Scientists chart course toward a new world of synthetic biology
A UC Berkeley team with NSF funding has compiled a roadmap for the future of synthetic or engineering biology, based on the input of 80 leaders in the field from more than 30 institutions.

DFG presents position paper on synthetic biology
Clear distinction between synthetic biology and underlying methods required / No new potential risks associated with current research work

Commandeering microbes pave way for synthetic biology in military environments
A team of scientists from the US Army Research Laboratory and the Massachusetts Institute of Technology have developed and demonstrated a pioneering synthetic biology tool to deliver DNA programming into a broad range of bacteria.

BioBits: Teaching synthetic biology to K-12 students
As biologists have probed deeper into the genetic underpinnings of life, K-12 schools have struggled to provide a curriculum that reflects those advances.

Read More: Synthetic Biology News and Synthetic Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.